Saviola, Aldino Javier
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Communications in Science and Technology

Dual metal NiMo dispersed on silica derived from rice husk ash as a catalyst for hydrocracking of used palm cooking oil into liquid biofuels Wijaya, Karna; Setyono, Risandrika Dwijayanti Putri; Pratika, Remi Ayu; Heraldy, Eddy; Suseno, Ahmad; Hakim, Lukman; Tahir, Iqmal; Oh, Won-Chun; Saviola, Aldino Javier
Communications in Science and Technology Vol 9 No 2 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.2.2024.1480

Abstract

The production of vegetable-based fuels has intensified in recent years due to the decreasing availability of fossil fuels and their environmental impacts. This study explores the synthesis, characterization, and application of nickel-molybdenum (NiMo) bimetal-dispersed silica catalysts for converting used palm cooking oil into liquid biofuels. The catalysts were synthesized using the wet impregnation method, incorporating Ni and Mo metals at concentrations of 1, 2, and 3% by weight of silica derived from rice husk ash. Impregnation of the silica with Ni and Mo metals increased its acidity, with the NiMo/SiO? 2 catalyst exhibiting the highest acidity value of 4.34 mmol/g. This catalyst also demonstrated the largest specific surface area and total pore volume, measured at 205.51 m²/g and 0.88 cm³/g, respectively. Hydrocracking of used palm cooking oil into liquid biofuels was performed at an optimum temperature of 450 °C with catalyst-to-feed weight ratios of 1:100, 2:100, and 3:100 for 1 h by hydrogen gas supply of 20 mL/min. Catalyst activity tests revealed the highest mass percentage of liquid product, 23.3%, at a ratio of 1:100 (w/w), with a biofuel yield of 20.34%, comprising 14.20% gasoline and 6.14% diesel. By utilizing biomass waste as both a catalyst and feedstock, this study presents a sustainable approach to reducing the carbon footprint and promoting environmental balance.
Fixing cobalt metal onto mordenite through spray impregnation and its evaluation as a catalyst in transforming used coconut cooking oil into bio-jet fuel Saviola, Aldino Javier; Wijaya, Karna; Syoufian, Akhmad; Vebryana, Marini Fairuz; Anggraeni, Widuri; Rozana, Kharistya; Darsono, Nono; Saputra, Dita Adi; Saputri, Wahyu Dita
Communications in Science and Technology Vol 9 No 2 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.2.2024.1535

Abstract

Given the challenges posed by fossil-based jet fuel, research into bio-jet fuel production has intensified to achieve carbon neutrality. The present work reports a significant breakthrough with the successful conversion of used coconut cooking oil into bio-jet fuel utilizing a cobalt-impregnated mordenite catalyst. Cobalt was introduced to mordenite via the spray impregnation method at a concentration of 2% using a CoCl?·6H?O solution. The resultant catalyst was characterized using FTIR, XRD, NH?-TPD, SAA, FESEM-EDX Mapping, TEM, XPS, and TG/DTA instruments. Hydrotreatment was conducted in a semi-batch reactor at atmospheric pressure, employing H? gas at a flow rate of 20 mL/min and a catalyst-to-feed ratio of 1:200 (w/w) for a duration of 2 h. The addition of cobalt significantly enhanced the efficiency of the hydrotreatment by improving the catalytic performance of mordenite as a support material. The liquid product conversion and total bio-jet fuel yield obtained from the hydrotreatment of used coconut cooking oil using the Co/mordenite catalyst were 60.25% and 51.11%, respectively. The highest selectivity for bio-jet fuel was observed in fraction II (450–550 °C) at 88.90%. This catalyst exhibited sustained performance over three consecutive runs, indicating its potential application in the future biofuel industry. Altogether, this research reveals the possibility of employing used coconut cooking oil as a sustainable and promising feedstock to be converted into bio-jet fuel by hydrodeoxygenation and/or hydrocracking reactions.