Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of Hydrothermally Prepared NiMo Dispersed on Sulfated Zirconia Nano-Catalyst in The Conversion of Used Palm Cooking Oil into Jet Fuel Range Bio-Hydrocarbons Wijaya, Karna; Saviola, Aldino Javier; Amin, Amalia Kurnia; Vebryana, Marini Fairuz; Bhagaskara, Adyatma; Ekawati, Hilda Anggita; Ramadhani, Saffana; Saputra, Dita Adi; Agustanhakri, Agustanhakri
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20157

Abstract

Human efforts to overcome environmental problems from using fossil fuels continue, such as hydroconversion of biomass into bio-jet fuel. Research on producing a jet fuel range of bio-hydrocarbons from used palm cooking oil catalyzed by sulfated zirconia impregnated with nickel-molybdenum bimetal has been successfully conducted. The hydrothermal method synthesized the nano-catalyst material in the sulfation and impregnation processes. The hydroconversion process was carried out at atmospheric pressure and a temperature of 300–600 °C for 2 h with a hydrogen gas flow rate of 20 mL/min and a catalyst-to-feed ratio of 1:100 (wt%). Compared with zirconia and sulfated zirconia, NiMo-impregnated sulfated zirconia showed the best activity and selectivity in bio-jet fuel production with liquid product and selectivity of 61.07% and 43.49%, respectively. This catalyst also performed well in three consecutive runs, with bio-jet fuel selectivity in the second and third runs of 51.68% and 30.86%, respectively. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
The Calcination Temperature Effect on Crystal Structure of LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium-Ion Batteries Rahayu, Sri; Saudi, Aghni Ulma; Tasomara, Riesma; Gumelar, Muhammad Dikdik; Utami, Wahyu Tri; Hapsari, Ade Utami; Raharjo, Jarot; Rifai, Abdulloh; Khaerudini, Deni Shidqi; Husin, Saddam; Saputra, Dita Adi; Yuliani, Hanif; Andrameda, Yurian Ariandi; Taqwatomo, Galih; Arjasa, Oka Pradipta; Damisih, Damisih; Hardiansyah, Andri; Pravitasari, Retna Deca; Agustanhakri, Agustanhakri; Budiman, Abdul Hamid
Journal of Batteries for Renewable Energy and Electric Vehicles Vol. 1 No. 02 (2023): NOVEMBER 2023
Publisher : NBRI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59046/jbrev.v1i02.22

Abstract

The lithium-ion battery has gained popularity among other secondary batteries for portable electronic devices and electric vehicle applications, especially the LiNi1/3Co1/3Mn1/3O2 or NMC111, considering its well-balanced configuration resulting in stable and safe electrochemical performance. NMC111 has been successfully prepared using a coprecipitation process at calcination temperatures from 800 to 950°C. The physical characteristics were investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and Particle Size Analysis (PSA). The XRD patterns showed the rhombohedral single phase for all calcination temperatures. Meanwhile, higher calcination temperatures offer higher degree of crystallinity, lower intensity ratio and more undesirable cation mixing. The particles with a uniform rectangle or pyramid shape are observed at the calcination temperature range from 800 to 900°C. However, bigger submicron particles with a rectangle or pyramid shape are detected at a higher temperature (950°C). The SEM-EDS mapping shows the homogeneity composition for all variation calcination temperatures. PSA analysis showed that calcination temperature at 800 and 850°C gives the particle less than 400 nm suggesting a potential material for a cathode of lithium-ion batteries.