Mahmudah, Muhammad Suryauno
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Learning of Electromagnetic Wave Propagation through 3D Visualization in Physics Education Mahmudah, Muhammad Suryauno; Yacobi, Muhammad Abrar Asyrafy; Steeven, Daniel
Current STEAM and Education Research Vol. 2 No. 1 (2024): Current STEAM and Education Research, Volume 2 Issue 1, April 2024
Publisher : MJI Publisher by PT Mitra Jurnal Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58797/cser.020104

Abstract

This study aims to simulate the characteristics of electromagnetic wave propagation in different media, specifically focusing on water and oil, using Maxwell's wave equations. Water, acting as a conductor, and oil, as an insulator, were chosen to investigate the disparities in conductivity, attenuation constants, and their effects on wave propagation. The concept of electromagnetic wave propagation forms the basis for many advanced topics in physics, but is often challenging due to its abstract nature. Through these simulations, researchers observed temporal changes in electric and magnetic fields and visualized wave trajectories. These simulations allow for an extensive analysis without the need for physical wave transmission experiments. The integration of 3D visualization is a tool that can significantly improve students' concept understanding through visual and interactive representation of wave propagation. This research enhances theoretical understanding and has practical applications in areas such as underwater communications, oil spill monitoring, and measuring oil layer thickness. By employing the Finite-Difference Time-Domain (FDTD) method, the simulations demonstrated that variations in conductivity and attenuation constants considerably influence the behavior of electromagnetic waves. In oil, the waves retain their amplitude and phase during propagation, whereas in water, they experience attenuation, leading to a reduction in amplitude. These results offer valuable insights into the interaction of electromagnetic waves with various media, providing practical guidance for optimizing the performance of devices utilizing these waves.
STEM-Robotics Training for Science Teachers: Designing Interactive Learning Muliyati, Dewi; Purwahida, Rahmah; Handarini, Dwi; Permana, Handjoko; Bakri, Fauzi; Sabrina, Putri Marsha; Zain, Nisrina Tsabitah; Cahyani, Vina Dwi; Sholina, Wini; Mahmudah, Muhammad Suryauno
Mitra Teras: Jurnal Terapan Pengabdian Masyarakat Vol. 3 No. 1 (2024): Mitra Teras: Jurnal Terapan Pengabdian Masyarakat, Volume 3 Nomor 1, Juni 2024
Publisher : MJI Publisher by PT Mitra Jurnal Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58797/teras.0301.02

Abstract

STEM education is critical in current teaching because it combines science, technology, engineering, and mathematics into a unified learning experience. STEM education focuses on educating students for the changing profession by developing critical thinking and problem-solving abilities while also addressing gender inequalities in STEM disciplines. Robotics, an important component of STEM education, provides hands-on learning experiences that pique students' curiosity and practical application of STEM principles. To overcome the scarcity of talented individuals in STEM industries, educators must get STEM and robotics training. This publication describes a STEM-Robotics training program meant to help science instructors incorporate robotics into their teaching techniques. The program seeks to improve instructors' robotics education skills, create new teaching techniques, bridge theory and practice, and improve student engagement and learning results. By combining hands-on robotics activities into the curriculum, the program hopes to foster dynamic learning settings that encourage creativity, critical thinking, and collaborative problem-solving abilities. This book describes the STEM-Robotics training program's rationale, organization, aims, and expected impact, emphasizing its importance in educating students for future employment in technology, engineering, and other STEM-related disciplines.