Setiawan, Hadiguna
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Performa Metode Klasifikasi Dataset Multi-Class Kanker Kulit Menggunakan KNN dan HOG Rahayu, Sarwati; Sandiwarno, Sulis; Dwika Putra, Erwin; Utami, Marissa; Setiawan, Hadiguna
JSAI (Journal Scientific and Applied Informatics) Vol 7 No 2 (2024): Juni
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v7i2.6423

Abstract

Detection of skin cancer in its early phase is a challenge even for dermatologists. This study aims to analyze the performance of classification methods on multiclass skin cancer datasets using K-nearest neighbor (KNN) and histogram of oriented gradients (HOG). The dataset is taken publicly under the name Skin Cancer MNIST dataset: HAM10000 dataset totaling 10,015 data. The first experiment used the pixels per cell parameter of 8.8 and cells per block of 2.2 to get an accuracy of 60.58%. The second experiment used the pixels per cell parameter of 8.8 and cells per block of 2.2 to get an accuracy of 60.58%. The last experiment using the pixels per cell parameter of 8.8 and cells per block of 2.2 got the best accuracy of 61.43%.
Analisis Perbandingan Algoritma Machine Learning Dan Deep Learning Untuk Sentimen Analisis Teks Umpan Balik Tentang Evaluasi Pengajaran Dosen Setiawan, Hadiguna; Ariatmanto, Dhani
JSAI (Journal Scientific and Applied Informatics) Vol 7 No 2 (2024): Juni
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v7i2.6572

Abstract

Evaluation of lecturer performance is very important because it helps in monitoring and ensuring that lecturers fulfill their duties effectively in maintaining integrity and teaching lecture material. By assessing lecturer performance based on criteria such as teaching, it can identify areas for improvement and provide support if needed. This study aims to determine the accuracy level of machine learning and deep learning combined with word-embedding for text analysis of lecturer teaching performance evaluation using preprocess techniques.The dataset consisted of 663 positive data, 552 negative data, and 465 neutral data. Successful in the results of the experiment, the training accuracy value for each classification method included KNN of 74.75%, SVM of 65.78%, RF of 98.58%, LSTM of 95.64% and Bi-LSTM of 95.91%. The test accuracy value for each classification method includes KNN of 59.82%, SVM of 62.88%, RF of 69.37%, LSTM of 70.81% and Bi-LSTM of 72.25%. The most superior method in processing data of 663 positive data, 552 negative data, and 465 neutral data by applying the word-embedding method, namely BiLSTM with a training accuracy of 95.91% and a testing accuracy of 72.25%.
Analisis Usabilitas Sistem Informasi Akademik Berdasarkan Usability Scale (Studi Kasus: Universitas Mercu Buana) Rahayu, Sarwati; Nugroho, Andi; Sandiwarno, Sulis; Salamah, Umniy; Dwika Putra, Erwin; Purba, Mariana; Setiawan, Hadiguna
JSAI (Journal Scientific and Applied Informatics) Vol 7 No 3 (2024): November
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v7i3.7478

Abstract

The usability analysis on the website of Mercu Buana University (UMB) is an important research carried out to ensure that the site effectively supports the university's goals, especially in terms of the user's experience in completing academic and administrative goals with ethical and professional standards. This research was carried out during the period January 2024 to May 2024. The main purpose of this study is to measure the usability of the UMB website using a questionnaire method. The questionnaire used for the research adapted the System Usability Scale (SUS) which consisted of a total of 10 questions. Based on the calculation of each statement item having a minimum score of 0 and a maximum score of 2.5, the final score of each respondent ranged from 0 to l00. The average score obtained was 63,125. Based on the results of the score of 63,125, the UMB website has a score in the range of 50 to 70. This shows that the UMB website is in the "quite good" category but there is still a need for a little improvement. Some icons or layouts on the UMB website are not familiar to respondents. In addition, there needs to be guidelines developed to provide information on how to use the website for users who are using the UMB website for the first time.