Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Information System Exploration and Research

Machine Learning Techniques for Classifying Indonesian Foods and Drinks by Nutritional Profiles Al Qohar, Bagus; Tanga, Yulizchia Malica Pinkan; Darmawan, Aditya Yoga
Journal of Information System Exploration and Research Vol. 3 No. 1 (2025): January 2025
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v3i1.528

Abstract

Local ingredients and Indonesia's diverse culinary traditions play an important role in shaping people's health and eating habits. Understanding the nutritional profile of Indonesian food is crucial to promoting healthier food choices. This study aims to classify Indonesian food and beverages based on their nutritional content, with a focus on calories, protein, fat, and carbohydrates. To achieve this, a dataset of 1,346 food items was preprocessed using normalization techniques to improve model performance. Each food item was categorized as High Protein, High Fat, or High Carbohydrate based on its dominant macronutrient content. Five machine learning models which are K-Nearest Neighbors, Decision Trees, Support Vector Machines, Random Forest, and Multilayer Perceptron-were used and compared. Among these models, the Support Vector Machine achieved the highest classification accuracy of 99.1%. These findings demonstrate the potential of machine learning in nutrition research, providing a basis for developing data-driven dietary recommendations tailored to individual nutritional needs. This research bridges traditional dietary research with modern computational approaches, offering insights for public health initiatives and personalized nutrition planning.
Enhancing Abusive Language Detection on Twitter Using Stacking Ensemble Learning Utami, Putri; Tanga, Yulizchia Malica Pinkan; Unjung, Jumanto; Muslim, Much Aziz
Journal of Information System Exploration and Research Vol. 3 No. 2 (2025): July 2025
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v3i2.594

Abstract

Detecting abusive language on Twitter is an important step in reducing the prevalence of negative content and harassment. This study aims to improve the accuracy and effectiveness of abusive language detection on Twitter by addressing the limitations of the single model commonly used previously. The stacking method is employed by combining Term Frequency-Inverse Document Frequency (TF-IDF) as the feature extraction method, along with the Naive Bayes and XGBoost algorithms as classification models. Naive Bayes is known for its simplicity in handling text classification, while XGBoost excels in processing complex data and achieving high accuracy. The combination of these two models is expected to improve performance in detecting coarse language. The research results show that the proposed model outperforms the methods in previous studies, with an accuracy of 91.91% and an AUC of 96.76%. These findings demonstrate the effectiveness of the stacking approach in reducing classification errors in coarse language detection. Further research could explore the use of larger datasets or more complex models to improve detection accuracy.