Claim Missing Document
Check
Articles

Found 23 Documents
Search

PENERAPAN ALGORITMA A* UNTUK MENETUKAN JALUR TERPENDEK DARI SIPIROK KE UIN SYAHADA PADANGSIDIMPUAN: Indonesia Linhar, Ade; Putra, Rafi Septiawan; Simbolon, Hasanal Fachri Satia; Izhari, Fahmi; Sipahutar, Meri Nova Marito
TECHSI - Jurnal Teknik Informatika Vol. 16 No. 2 (2025)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v16i2.25797

Abstract

Efisiensi mobilitas antara pusat pemerintahan Kabupaten Tapanuli Selatan di Sipirok dengan pusat pendidikan UIN Syahada Padangsidimpuan menjadi krusial seiring peningkatan aktivitas akademik dan administrasi. Penelitian ini bertujuan untuk menerapkan dan menganalisis kinerja algoritma A* (A-Star) dalam menentukan jalur terpendek pada rute tersebut. Berbeda dengan algoritma Dijkstra yang menelusuri seluruh kemungkinan rute, algoritma A* memanfaatkan fungsi heuristik untuk memprioritaskan pencarian jalur yang lebih menjanjikan menuju tujuan. Penelitian ini memodelkan peta jalan lintas Sipirok-Padangsidimpuan ke dalam bentuk graf berbobot, di mana simpul merepresentasikan persimpangan atau landmark utama. Fungsi heuristik yang digunakan adalah Haversine Formula untuk menghitung jarak garis lurus berdasarkan koordinat geografis. Hasil perhitungan menunjukkan bahwa algoritma A* sukses menemukan rute optimal dengan jarak tempuh total ±38 km melalui Jalan Lintas Sumatera. Analisis kompleksitas menunjukkan bahwa A* memiliki waktu pencarian yang lebih cepat (node visit lebih sedikit) dibandingkan pencarian buta (blind search), menjadikannya solusi efektif untuk sistem navigasi lokal di wilayah Tapanuli Selatan.
Episodic Sparse Cost Evaluation for Policy Analysis in Stochastic Shortest Path Problems: english Izhari, Fahmi; Putra, Rafi Septiawan; Simbolon, Hasanal Fachri Satia; Linhar, Ade
TECHSI - Jurnal Teknik Informatika Vol. 16 No. 2 (2025)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v16i2.25800

Abstract

Conventional evaluations of stochastic shortest path policies typically rely on dense reward or cost signals, which often obscure rare but behaviorally critical interactions. This paper introduces an episodic sparse-cost evaluation framework that assigns costs only to a small subset of state action pairs identified through a short probing phase, thereby decoupling cost accumulation from trajectory length. The objective of this study is to assess whether episodic sparse costs can provide a more interpretable and behavior-focused evaluation of policy execution compared to dense formulations. The framework is empirically validated through controlled navigation experiments under a fixed policy in a grid-based stochastic shortest path setting. In a representative episode, the agent successfully reached the terminal state in 95 steps, while incurring only two cost-triggering events drawn from a sparse support set of size five. This resulted in a total episodic cost of 2.0 and a hit rate of 0.021, indicating that more than 97% of agent environment interactions were cost-free. The temporal distribution of costs appeared as isolated impulses rather than continuous signals, enabling precise localization of critical decision points along the trajectory. These findings demonstrate that episodic sparse-cost evaluation yields bounded, event driven cost behavior that remains stable even for long trajectories. The proposed framework offers a transparent and scalable alternative for analyzing policy behavior in stochastic environments, particularly in scenarios where rare violations, constraints, or risk sensitive interactions are of primary concern. Future research will extend this evaluation paradigm to multi-episode analysis, adaptive policies, and integration with constraint aware learning objectives.
Analisis Komparasi Algoritma Random Forest dan Support Vector Machine untuk Deteksi Intrusi Jaringan Fachri Satia Simbolon, Hasanal; Linhar P, Ade; Putra, Rafi Septiawan; Izhari, Fahmi
TECHSI - Jurnal Teknik Informatika Vol. 16 No. 2 (2025)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v16i2.25811

Abstract

Meningkatnya kompleksitas serangan siber menuntut adanya sistem keamanan jaringan yang adaptif dan efisien. Intrusion Detection System (IDS) tradisional seringkali memiliki keterbatasan dalam mengenali pola serangan baru. Penelitian ini bertujuan untuk mengevaluasi kinerja dua algoritma Machine Learning, yaitu Random Forest (RF) dan Support Vector Machine (SVM), dalam mengklasifikasikan trafik jaringan normal dan serangan. Eksperimen dilakukan menggunakan dataset NSL-KDD dengan melibatkan seluruh 41 fitur melalui tahapan preprocessing, normalisasi, dan validasi data dengan rasio 80:20. Hasil pengujian menunjukkan bahwa algoritma Random Forest mengungguli SVM dengan tingkat akurasi mencapai 99.78%, presisi 1.00, dan recall 1.00. Sebaliknya, SVM mencatatkan akurasi sebesar 99.03%. Selain unggul dalam akurasi, Random Forest terbukti lebih efisien dengan waktu pelatihan (training time) rata-rata 3.72 detik, hampir dua kali lebih cepat dibandingkan SVM yang membutuhkan 6.61 detik. Berdasarkan hasil tersebut, Random Forest direkomendasikan sebagai algoritma yang lebih efektif untuk implementasi IDS pada lingkungan yang membutuhkan respons waktu nyata (real-time).