Claim Missing Document
Check
Articles

Found 4 Documents
Search

HYDROCARBON SHALE POTENTIAL IN TALANG AKAR AND LAHAT FORMATIONS ON SOUTH AND CENTRAL PALEMBANG SUB BASIN Julikah; Sriwidjaya; Jonathan Setyoko Hadimuljono; Panuju
Scientific Contributions Oil and Gas Vol. 38 No. 3 (2015): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.38.3.246

Abstract

South and Central Palembang Sub - basin over Talang Akar (TAF) and the Lemat/Lahat Formations (LEF/LAF) has shale hydrocarbons (HC shale) which are considerably promising. Seismic interpretation results shows potential HC shale scattered in several areas around the Rukam-1, Kemang-1, Lion-1 and Tepus-1 wells. Generally, thermal modeling results indicates early maturity of oil on the value of Ro = 0.6% at about 2000 m depth (h), the formation of oil on the value Ro = (0.7-0.9)% at between (2200 £ h <3100) m depth and formation of gas at Ro values between (0.9-1.2)% at a depth between (3100-3500)m. Talang Akar and Lahat/Lemat Formations have a shallow marine depositional environment with Type II/III kerogen and lacustrine with Type III kerogen. Based on advanced seismic data processing (a method of seismic attributes and spectral decomposition) these areas are expected to have a TOC>2% value that qualifies as shale HC. The assessment (P-50) of potential non-conventional oil and gas resources at Talang Akar and Lahat/Lemat Formations is estimated to be fairly large (up to 4200 MMBOE).
An Integrated Approach for Revisiting Basin-Scale Heavy Oil Potential of The Central Sumatera Basin Bambang Widarsono; Herru Lastiadi Setiawan; Tri Muji Susantoro; Suliantara; Jonathan Setyoko Hadimuljono; Desi Yensusminar; Julikah; Ongki Ari Prayoga
Scientific Contributions Oil and Gas Vol. 44 No. 1 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Central Sumatra Basin is one of the most prolifi c hydrocarbon basins in Indonesia and has proved itself as being the largest contributor to Indonesia’s national crude oil production. Heavy oil fi elds in the basin, such Duri fi eld as the largest one, plays a very important role in making up the basin’s whole oil production output. In general, the Central Sumatra Basin is also acknowledged for its heavy oil potential. Accordingly, a study under the auspices of the Ministry of Energy and Mineral Resources (MEMR) of the Republic of Indonesia is carried out to re-visit the potential. The study establishes and implements an integrated approach formed by a combined macro and micro analyses. In the macro analysis, a combined evaluations of regional geology, geophysics, geochemistry, remote sensing/geographic information system ( GIS), regional geothermal study, and fi eld survey/ microbiology is performed to identify geological positions of the heavy oil potential. In the micro analysis, on the other hand, qualitative and quantitative well-log analyses supported by well-test and laboratory measurement data on the identifi ed geological positions are carried out with an aim of identifying heavy oil bearing reservoirs/traps under three categories of certainty. The main result of the study is identifi cation of 51 fi elds/structures - producing and non-producing – that bears heavy oil within the three categories. Findings of the study can certainly be used as a prerequisite for more intensive and expansive studies to meet the need for a more solid conclusion regarding the heavy oil potential of the Central Sumatra Basin
Determination of Biodegradation Zone in Central Sumatra Basin Jonathan Setyoko Hadimuljono; Nurus Firdaus
Scientific Contributions Oil and Gas Vol. 44 No. 1 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

It is commonly known that heavy oil is mostly formed through biodegradation process within reservoir or on the surface both by aerobic and/or anaerobic bacteria that can live under specfi c temperature level(s). In order to investigate heavy oil occurences in Central Sumatra Basin, eff orts have been spent to determine the depths that represent the maximum temperature. By integrating the maximum viable temperature of typical bacteria and temperature gradient data, the depth of heavy oil zone is determined. The work is a combination of establishment of geothermal gradient map and laboratory analysis on fi eld sampled oil for determining types and temperature characteristics of microorganism living in the samples. Heavy oil sampling is made on seepages in areas nearby Minas fi eld. Subsequent laboratory analysis reveals Burkholderia multivorans ATCC BAA-247 as the predominant bacteria having maximum viabl temperature of 60° C. Based on the established geothermal gradient map, this maximum temperature correspond to average depth of 1818 ft (555.5 m). This average depth is used as the lower depth for the biodegradation zone over which investigation over presence of heavy oil bearing reservoirs/traps is made.
Heavy Oil Seapage Characteristic in Cipari Area, Banyumas Central Java Jonathan Setyoko Hadimuljono; Desi Yensusnimar
Scientific Contributions Oil and Gas Vol. 44 No. 3 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Oil seepage in Cipari, Banyumas, Central Java, has long been known. Although, Its occurrence had been reported in several publications, it's properties and characteristic, have not been explained in detail. Therefore, through field geology observation and laboratory analysis, this paper attempts to describe the oil seep characteristic, possible source rock origin, and its relationship with geological features in the surrounding area. Picnometer analysis resulted that this oil seep can be classified as heavy oil with 12n API Gravity. Gas Chromatography (GC) & Gas Chromatography Mass Spectometry (GCMS) analysis revealed that Cipari oil seep is heavily biodegraded. Possible source rock of the oil seep was interpreted based on bicadinane and oleanane biomarkers, which indicated that source was deposited in fluvio-deltaic/transitional environment. Based on regional geology reference of Banyumas sub-Basin, it is inferred that the source rocks possibly shale or claystone of Paleogene sediment which was thermally mature, and deposited in transition to marine environment. Deep seated fault that extent from Majenang to Karangbolong areas is probably the main migration pathway of the oil seepage from the kitchen or deep reservoir to the surface. The Cipari anticline outcrop, which associated with faults and fractures, become the place where the oil seep occurs in the surface. Heavy biodegradation of the oil seep may possibly be accelerated by hydrothermal system during migration from the reservoir/kitchen area to the surface.