Claim Missing Document
Check
Articles

Found 12 Documents
Search

HYDROCARBON POTENTIAL OF TOLO BAY MOROWALI REGENCY: QUALITATIVE ANALYSIS Suliantara; Tri Muji Susantoro
Scientific Contributions Oil and Gas Vol. 38 No. 1 (2015): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.38.1.234

Abstract

Tolo Bay is located between East Arm and Southeast Arm Sulawesi, reaching a water depth of up to 3500 meters below sea level. Regionally, this block is situated within Banggai Basin where some gas and oil fi elds are already in production. The closest fi eld is Tiaka Oil Field located about 125 kilometers northwest of the study area. A geo-science review has been conducted to clarify the potential existence of hydrocarbon in this block. Based on previous reports, papers, and subsurface data from the Directorate General of Oil and Gas, the study area is located within the collision area between Banggai-Sula Microcontinent and Sulawesi. This collision occurred during Late Creataceous and Middle Miocene periods. During drifting phase a sedimentation process occurred at the front of the Banggai-Sula Microcontinent. This sediment is potentially source rock and reservoir rock. Meanwhile, during the drifting phase the study area is interpreted as located at the southern part of Banggai-Sula Microcontinent. This different tectonic setting will impact on the type of sedimentary rock, hence source rock and reservoir rock occurrence in the study area is still unclear. As source rock and reservoir rock within the study area are unclear, hydrocarbon explorations will be very risky. In order to reduce exploration risk, it is proposed to conduct geological and geophysical studies using the latest seismic data that was surveyed by PT. TGS – NOPEC and PT. ECI – PGS.
STATUS OF THE INDONESIAN OIL AND GAS BLOCKS ON BORDERS WITH NEIGHBORING COUNTRIES Djoko Sunarjanto; Susilohadi Susilohadi; Suliantara; Abdul Gaffar
Scientific Contributions Oil and Gas Vol. 39 No. 3 (2016): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.39.3.269

Abstract

Although revenue from the oil and gas industry is no longer the main source of national income, it is still playing a strategic role. The oil and gas industry is known as a high-tech, a high-risk, and a high-capital industry, on which the country has limited capacity for regional development, especially of the resources in areas located along the national border. The main objective of this research is to closely identify the recent growth centre status of blocks and sedimentary basins located along the national border. The study relies on published reports, studies, and data such as bathymetry map, national geographic and jurisdiction map, and maps of existing oil and gas blocks. All data were managed under a geographic information system application in order to conduct comparative and qualitative analysis of those overlaying data. Some oil and gas blocks that are located near to neighboring countries, such as Singapore, Malaysia, Brunei, Vietnam, The Philippines, Papua New Guinea, East Timor, and Australia have been categorized based on these methods of scoring and ranking analysis to identify new economic centres of growth. Three categories are suggested: very important, important, and ordinary as new growth centres. The Natuna Sea blocks, Iwur, and Timor blocks are considered to be important.
The Potential of Remote Sensing Data for Oil and Gas Exploration in Indonesia: a Review Tri Muji Susantoro; Suliantara; Agung Budi Harto; Herru Lastiadi Setiawan; Gatot Nugroho; Danang Surya Candra; Adis Jayati; Sayidah Sulma; M Rokhis Khomarudin; Rahmat Arief; Ahmat Maryanto; Yohanes Fridolin Hestrio; Kurdianto
Scientific Contributions Oil and Gas Vol. 46 No. 1 (2023): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.46.1.317

Abstract

Oil and gas are important commodities in Indonesia and remain the main source for energy in various sectors. Therefore, the government aim to produce 1 million barrels of oil per day (BOPD) by 2030. To achieve this goal, exploration work is needed to discover new reserves and maintain production in existing fields. This study reviews the experience of oil and gas exploration in Indonesia using remote sensing data and the potential of using remote sensing data for oil and gas exploration through surface anomalies. Surface anomalies are changes or deviations that occur on the surface as the result of the presence of oil and gas underneath. These anomalies included vegetation growing stunted, yellowing or dying, changes in the quantity and composition of clay minerals, iron oxide, increased concentrations of hydrocarbons, helium, radon, carbon dioxide, microbes, and the presence of paraffin dirt formation, as well as geomorphological changes. This study aims to assess and explain the capabilities of remote sensing data in Indonesia for oil and gas exploration. The results show that remote sensing can be used for the initial exploration of oil and gas by delineating areas of potential oil and gas traps based on topographical anomalies and geological mapping integrated with gravity data and increasing confidence in the presence of oil and gas in the subsurface based on surface anomalies. These results are expected that the usefulness of remote sensing can be used to support oil and gas exploration in Indonesia and can be recognized and used for oil and gas activities by utilizing existing methods and discovering methods for data processing and their applications.
Integrated Approach to Investigate the Potential of Asphalt/Tar Sand on Buton Island, Indonesia Bambang Widarsono; Djoko Sunarjanto; Tri Muji Susantoro; Suliantara; Herru L Setiawan; Panca Wahyudi; Sugihardjo; Mohamad Romli; Diana Dwiyanarti
Scientific Contributions Oil and Gas Vol. 46 No. 2 (2023): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.46.2.324

Abstract

Buton island as a potential area for conventional oil and gas, as well as asphalt/bitumen has long been the target of evaluation aimed at exploiting this potential, although to date no economic exploitation has been implemented. In this study, the potential of Buton asphalt/bitumen with mineable and in situ (non-mineable) status was studied and evaluated. In this study, qualitative and quantitative analysis have been carried out from Landsat 8 and Shuttle Radar Topography Mission (SRTM) data with the aim of identifying the presence of active faults and gravity due to orogenic processes. The lineament density pattern shows a general direction of NE-SW to NNW-SSE. The lineament process between satellite image data and gravity surveys helps efforts to identify the distribution of asphalt on Buton Island. Through combining distribution patterns of the Sampolakosa, Tondo, and Winto Formations, contain asphalt/bitumen, the study produces distribution of asphalt/bitumen accumulation in the region, both in surface/mineable and in situ categories. The 'best estimate' reserves obtained are 786.6 million barrels and 46 million barrels, respectively for asphalt/bitumen surface/mineable reserves and in situ/non-mineable reserves. It is hoped that this information regarding the potential/reserves of asphalt/bitumen on Buton Island may support efforts to exploit it
An Integrated Approach for Revisiting Basin-Scale Heavy Oil Potential of The Central Sumatera Basin Bambang Widarsono; Herru Lastiadi Setiawan; Tri Muji Susantoro; Suliantara; Jonathan Setyoko Hadimuljono; Desi Yensusminar; Julikah; Ongki Ari Prayoga
Scientific Contributions Oil and Gas Vol. 44 No. 1 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Central Sumatra Basin is one of the most prolifi c hydrocarbon basins in Indonesia and has proved itself as being the largest contributor to Indonesia’s national crude oil production. Heavy oil fi elds in the basin, such Duri fi eld as the largest one, plays a very important role in making up the basin’s whole oil production output. In general, the Central Sumatra Basin is also acknowledged for its heavy oil potential. Accordingly, a study under the auspices of the Ministry of Energy and Mineral Resources (MEMR) of the Republic of Indonesia is carried out to re-visit the potential. The study establishes and implements an integrated approach formed by a combined macro and micro analyses. In the macro analysis, a combined evaluations of regional geology, geophysics, geochemistry, remote sensing/geographic information system ( GIS), regional geothermal study, and fi eld survey/ microbiology is performed to identify geological positions of the heavy oil potential. In the micro analysis, on the other hand, qualitative and quantitative well-log analyses supported by well-test and laboratory measurement data on the identifi ed geological positions are carried out with an aim of identifying heavy oil bearing reservoirs/traps under three categories of certainty. The main result of the study is identifi cation of 51 fi elds/structures - producing and non-producing – that bears heavy oil within the three categories. Findings of the study can certainly be used as a prerequisite for more intensive and expansive studies to meet the need for a more solid conclusion regarding the heavy oil potential of the Central Sumatra Basin
Relationship Between Tectonic Evolutions and Presence of Heavy Oil in The Central Sumatra Basin Herru Lastiadi; Suliantara; Bambang Widarsono
Scientific Contributions Oil and Gas Vol. 44 No. 1 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Heavy oil is formed through biodegradation process of hydrocarbons, as well as water washing, in which light hydrocarbon fraction disappears and leaves the heavy fraction. Heavy oil is essentially an asphaltic, dense (low API gravity), and viscous that is chemically characterized by its high content of asphaltenes in the oil. Although variously defi ned, 25o API is set the upper limit for heavy oil. Heavy oil in the Central Sumatra Basin is evidently formed as a result of biodegradation and water washing (a hydrodynamic process within oil reservoir) mechanisms. These processes occur as result of tectonic uplift of the reservoir after it has been fi lled with hydrocarbons. Heavy oil reservoir depths in the Central Sumatra Basin are generally shallower than 1,000 feet (300-400 meters), at which surface water may may be associated with the reservoir hence enabling the heavy oil transformation. A combined geology, remote sensing/geographic information system ( GIS), geophysics, stratigraphy, and wellbased analyses is utilized to serve the study. It has been observed that within the northern part of the basin, heavy oil is mainly found in fi elds located within uphill fault blocks such as the up-thrown part of the Sebanga thrust fault with its Duri, Sebanga North, Kulin, Rantau Bais, Batang, Akar, and Genting fi elds. In the western part of the basin there are the Kumis, Kotalama and Pendalian heavy oil fi elds associated with Dalu-Dalu thrust fault and Gadang Island uplift. In total 51 fi elds/structures containing or suspected to contain heavy oil are associated with uplifted geological positions, hence showing the strong relations between tectonic evolutions and present day presence of heavy oil within the basin.
A Preliminary Study on Heavy Oil Location in Central Sumatra using Remote Sensing and Geographic Information Sytem Suliantara; Tri Muji Susantoro; Herru Lastiadi Setiawan; Nurus Firdaus
Scientific Contributions Oil and Gas Vol. 44 No. 1 (2021): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Heavy oil which is classifi ed as non conventional oil is the target of exploration in the world. In Indonesia, the potential for heavy oil exploration is quite large, especially in the Central Sumatra basin. This study aims to map the location of potential heavy oil based on remote sensing data and regional gravity data supported by a geographic information system. Landsat 8 OLI satellite data is processed to produce 567 (RGB) color composite images, then further processing is carried out with DEM data to produce fusion images; mapping the vegetation index, clay mineral index, iron oxide index, surface temperature. The gravity data is used for mapping subsurface geological structures. Overlay analysis is carried out on the results of remote sensing data processing and interpretation of surface and subsurface geology. Based on the analysis, it shows that heavy oil fi elds are generally found on the surface and subsurface structures which are relatively identical and located on the edge of the basement high. Based on this analysis, the locations that have the potential for heavy oil and gas traps are on the northeast edge, Dalu-dalu High, the edge of Kampar High, the west edge of Kuantan High, the southwest edge of the Beruk High, the southwest edge of the Sembilan High.
THE APPLICATION OF REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM FOR OIL AND GAS PIPELINE ROUTE PLANThe application of thc rcmote sensing and gcographic Information system was widely used in the oil and gas industry in Indonesia. Suliantara
Scientific Contributions Oil and Gas Vol. 27 No. 3 (2004): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The application of thc rcmote sensing and gcographicInformation system was widely used in the oil and gasindustry in Indonesia.
USE OF HIGH RESOLUTION SATELLITE DATA (IKONOS IMAGERY) FOR LOGISTIC SUPPORT Iri Muji Susantoro; Adji Gatot Tjiptono; Suliantara
Scientific Contributions Oil and Gas Vol. 28 No. 2 (2005): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Many activilics must be done before doing thc 3Dseismic survey. 3D seismic work needs accurate andprecise Information to minimize the cost and negativeimpact, and or dispute with the local people. The dataneeds information on road for moving instrument, bridge,river and Ancient River. Data of landuse and landcover,building, public facility, demographic and administrationare required for estimating compensation. The use ofremote sensing is a good alternative to achieve this ob-jective.
Lapangan Migas Potensial Sebagai CCUS-EOR Studi Kasus: Prospek Injeksi CO, di Sumatera Selatan M Romli; Sugihardjo; Djoko Sunarjanto; Suliantara; Nurus Firdaus; Dadan DSM Saputra
Lembaran Publikasi Minyak dan Gas Bumi Vol. 55 No. 3 (2021): LPMGB
Publisher : BBPMGB LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sumatera Selatan sebagai provinsi sumber energi perlu tetap dijaga kelestarian dan keberlanjutannya. Dua hal antara sumber energi dan menjaga kawasan berwawasan lingkungan, memunculkan ide mengoptimalkan Gas Co, sebagai hasil limbah PLTU untuk dikelola menjadi bermanfaat, dengan menginjeksikannya ke lapangan migas di Sumatera Selatan. Metodologi penelitian menggunakan analisis kualitatif dan kuantitatif data primer dan sekunder, baik data sumber dan target injeksi CO,. Hasil identifikasi data dilakukan analisis awal untuk menentukan lokasi terpilih di Sumatera Selatan. Survey lapangan berbasis Sistem Informasi Geografi di PLTU Simpang Belimbing dan sekitarnya guna menyusun Peta Network Clustering. Analisis buffer digunakan untuk mengetahui lokasi terbaik penempatan fasilitas integrasi CO,, distance analisis digunakan untuk mengetahui prioritas target berdasarkan jarak dari sumber, serta morfologi analisis digunakan untuk mengetahui fasilitas distribusi yang efektif bagi tiap pasangan sumber-target. Hasilnya diperoleh beberapa pasangan sumber-target yang secara jarak dan kebutuhan-ketersedian CO, mencukupi untuk dilakukan injeksi CO,-EOR. Alternatif skenario buffer zone dengan target Cluster Lapangan Migas PQR Sumatera Selatan, pada radius 100 km utamanya akan didukung CO, hasil PLTU Simpang Belimbing dan dua lapangan migas terpilih sebagai kandidat pada Klaster PQR. Jumlah isi minyak awal pada lapangan tersebut 365,850.00 MSTB, terdapat potensi produksi injeksi CO, sebesar 54,877.50 MSTB dan kebutuhan CO, untuk injeksi sebesar 21,951.00 MTon. Skenario radius 100 km akan ditambah dari Instalasi stasiun pengumpul gas Grisik dan Suban, dan seterusnya makin besar radius buffer akan banyak PLTU yang siap sebagai sumber CO,. Dilakukan pengukuran jarak datar yang sekaligus merupakan perhitungan panjang pipa dari lapangan migas ke sumber CO, terpilih, dalam radius 100 kilometer, minimum diperlukan pipa distribusi sepanjang 203.65 kilometer. Kelebihan penelitian ini terintegrasinya subsektor migas, mineral (batubara), dan energi guna menciptakan pengembangan energi hulu - hilir ramah lingkungan.