Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGGUNAAN FUNGSI RESPON HOLLING TIPE III PADA ANALISIS KESTABILAN MODEL PREDATOR-PREY DUA SPESIES Safitri, Fauziah; Noviani, Evi; Huda, Nur’ainul Miftahul
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 4 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i4.79726

Abstract

Ilmu biologi memiliki beberapa cabang salah satunya yaitu ekologi, ekologi membahas mengenai interaksi atau hubungan antara makhluk hidup, salah satu bentuk interaksi dari hubungan ini adalah ketika dua atau lebih makhluk hidup bersaing merebutkan kebutuhan hidup yang sama, sehingga hal ini sering terjadi lingkungan sekitar. Salah satunya yaitu permasalahan yang terjadi pada dua spesies predator dan prey, dalam hal ini harus dibentuk sebuah model dari sistem agar ekosistem dari predator dan prey stabil. Model predator prey masih belum bisa menjadi solusi yang tepat dalam menganalisis masalah kestabilan sehingga perlu ditambah dengan Holling tipe III. Fungsi respon Holling tipe III adalah keadaan yang terjadi ketika predator akan cenderung mencari populasi prey lain ketika populasi yag dimakan mulai berkurang, sehingga tingkat pertemuan antara predator dan prey menjadi dua. Penelitian ini membahas mengenai pembentukan sebuah model dari predator prey, kemudian menganilisis kestabilan model tersebut serta mencari hasil simulasi numerik menggunakan metode Runge Kutta Fehlberg. Dengan beberapa batasan diperoleh hasil penelitian yang berbentuk model matematika yang memiliki tiga titik ekuilibtium. Pada titik pertama diperoleh trayektori sadle point, kemudian untuk titik ekuilibrium kedua diperoleh trayektori node point stabil dan sadle point tidak stabil, Sedangkan untuk titik ekuilibrium ketiga diperoleh trayektori tidak stabil dimana nilai diskriminan lebih dari nol dan juga merupakan trayektori stabil dengan nilai diskriminannya kurang dari nol.  Kata Kunci: kestabilan ekosistem, titik ekuilibrium, simulasi numerik.
MODIFIED WEIGHT MATRIX USING PRIM’S ALGORITHM IN MINIMUM SPANNING TREE (MST) APROACH FOR GSTAR(1;1) MODEL Huda, Nur'ainul Miftahul; Fran, Fransiskus; Yundari, Yundari; Fikadila, Lisa; Safitri, Fauziah
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 1 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (663.366 KB) | DOI: 10.30598/barekengvol17iss1pp0263-0274

Abstract

The Generalized Space-Time Autoregressive (GSTAR) model is able to utilize modeling of both space and time simultaneously. The existence of a weight matrix is one of the aspects that established this model. The matrix illustrates the spatial impact that occurs between locations. In this research, a modified weight matrix is presented using the Minimum Spanning Tree approach of graph theory. Prim's algorithm is utilized for calculation here. Not only does the modified weight matrix depend distance, but also highlights the correlation. It makes the modified weight matrix unique. Before starting Prim's algorithm, the correlation is first utilized as an input in forming the initial graph. Following that, find the graph with the least of MST weight. Afterwards, the graph is described utilizing weight matrix, which is applied to the normalization process. Following this, the GSTAR(1;1) modelling process is carried out, beginning with estimating the parameters and then forecasting. The case study is Covid-19 cases that occurred on Java Island between July 2020 (when early Covid-19 entered Indonesia) and the beginning of January 2021. The aim of the research is to model the Covid-19 cases using modified weights and to predict the following five times. The outcome is a GSTAR(1;1) model with modified weights can captures both temporal and spatial patterns. The accuracy of the model is achieved for both the training data and the testing data by the MAPE computations, which yielded of 11.40% and 21.57%, respectively. Predictions are also obtained for each province in the next five times.