Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Performance of Concentrically Braced Frames (CBF) in Chevron V Brace and Diagonal Configuration by Considering Various Frame Heights Panjaitan*, Arief; Hasibuan, Purwandy; Putra, Rudiansyah; Afifuddin, Mochammad; Haiqal, Muhammad; Adian, Fakhran; Naulia, Dwi Putroe; Hazid, Asraf
Aceh International Journal of Science and Technology Vol 12, No 2 (2023): August 2023
Publisher : Graduate School of Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13170/aijst.12.2.30848

Abstract

Concentrically Braced Frame (CBF) is a structural system with high stiffness, so it is recommended to be implemented in earthquake-hazard areas. The stiffness in CBF is contributed by its diagonal component, which is called bracing. Bracing reduces lateral deformation on the frame system because of the earthquake and prevents heavy damage or failure of the structure. So far, several studies have been conducted. However, the effect of the frame height and the bracing configuration on the CBF performance has not yet been clarified. This study analytically investigated several models of CBF in Chevron V Brace and Diagonal configurations. Those models were prepared with different frame heights. The analyses were conducted by employing the cyclic load and considering yield displacement control in each model. The observation was emphasized on the load-displacement hysteresis curve, from which the performance of each model can be revealed. Three parameters of performance are evaluated: strength, stiffness, and dissipation energy. The analysis discovered that the Diagonal CBF performed better than the Chevron V Brace CBF by presenting a larger and more stable hysteresis curve, which is addressed to better energy dissipation. It is also discovered that reducing the frame height is suggested to enhance the CBF performance due to the earthquake.
Improved Performance on Inverted V Eccentrically Braced Frames (EBF) by Implementing Shear Link and Installing Web Stiffener in Link Panjaitan*, Arief; Hasibuan, Purwandy; Putra, Rudiansyah; Afifuddin, Mochammad; Bermansyah, Surya; Hasan, Muttaqin; Fauzi, Muhammad; Haiqal, Muhammad; Imran, Muhammad; Hanafi, Muhammad Fujii; Shimizu, Masaru
Aceh International Journal of Science and Technology Vol 14, No 1 (2025): April 2025
Publisher : Graduate School of Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13170/aijst.14.1.44305

Abstract

Eccentrically Braced Frame (EBF) is a structural system that is advised to be built in seismically active areas since they are characterized by good stiffness and ductility. A large and stable hysteretic curve, which corresponds to good seismic performance, is produced by the combination of improved stiffness and ductility in EBF. The diagonal component of EBF, known as a brace, contributes to its stiffness. Meanwhile, the short beam, also known as the link element, provides ductility in EBF. One element that is essential as an energy dissipator in EBF is a link element. By displaying a sizable and steady hysteretic curve, a prior study found that EBF with a flexural link could effectively dissipate the seismic energy. But to achieve a higher EBF, the seismic performance still needs to be enhanced. An analysis of various EBF models in Inverted V configurations was conducted in this paper. Each model was prepared with different shear link characteristics. Installing web stiffeners in the link to improve its seismic performance was also taken into consideration in this study. To obtain seismic performance, the cyclic loads were employed to each model under conditions of yield displacement control. Analysis of the data resulted in the load-displacement hysteretic curve. Next, using the hysteretic curve, the three seismic performance parameters, i.e., strength, stiffness, and dissipation energy were further developed. The investigation showed that compared to earlier studies, the EBF with shear links showed a bigger and more stable hysteretic curve which means better dissipated energy. Additionally, adding web stiffeners significantly increases the EBF's seismic capability. Therefore, because of the improved seismic characteristics, it is advised to establish the EBF using a shear link reinforced by web stiffeners in an earthquake-hazard area.