Rahmannisa, Amanda
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Education for Sustainable Development Based of Technological Pedagogical and Content Knowledge using Mixed-Methods Approach in Physics Teaching Ariska, Melly; Anwar, Yenny; Widodo, Ari; Sari, Diah Kartika; Yusliani, Novi; Rahmannisa, Amanda; Az Zahra, Lutfiah; Milka, Ikbal Adrian; Al Fatih, Zaky
Jurnal Penelitian & Pengembangan Pendidikan Fisika Vol. 10 No. 2 (2024): JPPPF (Jurnal Penelitian dan Pengembangan Pendidikan Fisika), Volume 10 Issue
Publisher : Program Studi Pendidikan Fisika Universitas Negeri Jakarta, LPPM Universitas Negeri Jakarta, HFI Jakarta, HFI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/1.10217

Abstract

Sustainable development aims to raise the standard of living for present and future generations. The Sustainable Development Goals (SDGs) are a set of 17 objectives related to sustainable development. Education for Sustainable Development, or ESD, is one initiative to achieve the SDGs. Presenting the findings of literature research on the features and use of ESD in science education is the goal of this paper. The primary source material for this literature study came from seven publications published in different journals. This study utilized a mixed-methods approach with a concurrent triangulation design involving questionnaires, interviews, and FGDs with 78 physics teachers. The TPACK scores showed a mean of 3.10, with the highest score in Attitude (3.27) and the lowest in Inquiry (3.04). The analysis's findings indicate that 1) Eight critical competencies are thought to be crucial for promoting sustainable development. 2) Learning tools, learning media, and learning models are ways ESD can be included in science education. These findings demonstrate that integrating ESD capabilities into science instruction can promote sustainable development and help attain the SDGs. The results highlight the need for targeted training in inquiry-based approaches and technology integration to enhance ESD implementation in physics education.
Pendampingan Sekolah Tangguh Iklim Melalui Pengenalan Coding Guna Mendukung Pendidikan Berbasis Lingkungan Berkelanjutan Ariska, Melly; Akhsan, Hamdi; Rahmannisa, Amanda; Afrizal, Muhammad; Wati, Lira Diska; Seprina, Iin
Jurnal Pendidikan dan Pengabdian Masyarakat Vol. 8 No. 3 (2025): Agustus
Publisher : FKIP Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppm.v8i3.9453

Abstract

Kegiatan Pengabdian kepada Masyarakat (PkM) ini bertujuan untuk membentuk karakter tangguh iklim melalui pelatihan coding berbasis edukasi lingkungan di SMA Muhammadiyah Tubohan. Kegiatan difokuskan pada peningkatan pemahaman guru dan siswa mengenai isu perubahan iklim serta integrasi teknologi digital dalam pembelajaran. Sebanyak 15 guru dan 30 siswa mengikuti pelatihan yang mencakup pembuatan animasi edukatif menggunakan Scratch dan Python sederhana. Hasil pre-test menunjukkan bahwa hanya 26,7% peserta memahami keterkaitan antara teknologi dan edukasi lingkungan. Setelah pelatihan, pemahaman meningkat menjadi 90% berdasarkan hasil post-test, menunjukkan peningkatan signifikan sebesar 63,3%. Sebanyak 80% peserta berhasil menyelesaikan proyek animasi bertema iklim, dan 93,3% menyatakan kegiatan ini menumbuhkan kepedulian terhadap dampak aktivitas manusia terhadap lingkungan. Sementara itu, 86,7% guru merasa lebih siap mengintegrasikan isu iklim dalam pembelajaran. Kegiatan ini memberikan kontribusi positif dalam menumbuhkan budaya sadar iklim yang berbasis data dan teknologi di sekolah. PkM ini diharapkan menjadi model pembinaan karakter lingkungan berkelanjutan yang dapat diterapkan secara luas di institusi pendidikan lainnya.
IMPLEMENTATION OF MACHINE LEARNING FOR RAINFALL PREDICTION IN SMOKE-PRONE AREAS OF SOUTH SUMATRA Rahmannisa, Amanda; Ariska, Melly; Siahaan, Sardianto Markos; Seprina, Iin
Jurnal Ilmu Fisika dan Pembelajarannya (JIFP) Vol 9 No 2 (2025): Jurnal Ilmu Fisika dan Pembelajarannya (JIFP)
Publisher : Program Studi Pendidikan Fisika, UIN Raden Fatah Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19109/h8s3w172

Abstract

Haze caused by forest and land fires is a serious problem in South Sumatra Province. One mitigation effort that can be made is to improve the accuracy of rainfall predictions, because rain plays an important role in reducing the potential for fires. This study implements machine learning methods, namely XGBoost and ConvLSTM, to predict spatiotemporal rainfall in areas prone to haze. The results show that ConvLSTM is capable of providing better predictions than the baseline, especially during periods of haze, by considering missing data imputation and masking techniques for disrupted satellite conditions. Increasingly apparent climate change in tropical regions has had a significant impact on rainfall patterns, particularly in South Sumatra, which is one of Indonesia's main agricultural and plantation centers. High rainfall variability can lead to the risk of flooding and drought, as well as disrupting productivity in the education, health, and economic sectors. Therefore, a more accurate rainfall prediction approach is needed to support climate adaptation planning and disaster risk mitigation. This study aims to compare the performance of three approaches to daily rainfall prediction, namely the ConvLSTM-based method, XGBoost, and Persistence, using daily observation data from BMKG for the South Sumatra region for the period 1981–2020. The input variables include average air temperature (Tavg), humidity, sunshine duration, and wind speed, while rainfall is used as the prediction target. The analysis was conducted through a time series approach, statistical distribution, and model performance evaluation using the quantitative metrics Root Mean Square Error (RMSE) and Critical Success Index (CSI). The results show that the ConvLSTM model produced the highest accuracy with an average RMSE of 10 mm/day and a CSI of 0.53, which is better than XGBoost (RMSE 12 mm/day; CSI 0.48) and the persistence method (RMSE 15 mm/day; CSI 0.40). Distribution analysis indicates that light to moderate rainfall occurs more frequently, while extreme rainfall occurs sporadically. The correlation heatmap shows that rainfall has a moderate positive relationship with humidity and a negative relationship with solar radiation, while average temperature and wind play a smaller role. The main contribution of this study is to provide empirical evidence that spatiotemporal deep learning methods such as ConvLSTM are superior in modeling the complexity of tropical rainfall dynamics compared to classical machine learning approaches and simple models. These findings can serve as a basis for the development of early warning systems and interactive climate dashboards at the regional level, while enriching the literature on rainfall prediction in tropical regions using an integrative approach.