Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pyramidal microwave absorbers: leveraging ceramic materials for improved electromagnetic interference shielding Rosli, Nur Shafikah; Abdullah, Hasnain; Kasim, Linda Mohd; Abdullah, Samihah; Taib, Mohd Nasir; Kasim, Shafaq Mardhiyana Mohamat; Noor, Norhayati Mohd; Ahmad, Azizah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp435-447

Abstract

This study presents the development and optimization of pyramidal microwave absorbers designed for efficient electromagnetic interference (EMI) reduction in anechoic chambers. Based on prior research, this work transitions from conventional flat cement-carbon absorbers to a novel pyramidal design, incorporating silicon carbide (SiC) as ceramic materials. Introducing ceramic materials into the cement-carbon composite aims to enhance absorption across a broader frequency range while maintaining structural integrity. The study evaluates five sets of pyramidal absorbers with varying SiC content within the 1–12 GHz frequency range. Reflectivity performance was assessed using the naval research laboratory (NRL) Arch free space method at a 0° incidence angle. Among the tested absorbers, the set containing 10% SiC demonstrated superior performance, achieving minimum and maximum reflectivity values of -26.6215 and -55.2752 dB, respectively, particularly in the C-band. The findings highlight the significant impact of material composition and porosity on the absorber's effectiveness, providing valuable insights for the future design of high-performance EMI absorbers.
Design and implementation of smart traffic light controller with emergency vehicle detection on FPGA Mohamad Hadis, Nor Shahanim; Abdullah, Samihah; Abdul Sukor, Muhammad Ameerul Syafiqie; Hamzah, Irni Hamiza; Setumin, Samsul; Ibrahim, Mohammad Nizam; Azmin, Azwati
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i1.pp48-59

Abstract

Increased traffic volumes resulting from urbanization, industrialization, and population growth have given rise to complex issues, including congestion, accidents, and traffic violations at intersections. In the absence of a functional smart traffic light system, traffic congestion occurs due to imbalanced traffic flow at intersections. Current traffic management lacks provisions for ensuring the unobstructed movement of emergency vehicles, even a small delay for which can have significant consequences. This paper presents a smart traffic light controller developed using Verilog hardware description language (HDL) in Quartus Prime 21.1 and Questa Intel field programmable gate array (FPGA) Starter Edition 2021.2, and implemented on an Altera DE2-115 FPGA. The controller is designed specifically to detect emergency vehicle at four-way intersections for inputs radio frequency identification (RFID) readers and infrared (IR) sensors. The RFID readers and IR sensors are managed through slide switches on the FPGA board. The smart traffic light controller contains three sub-modules: clock division, counter, and finite state machine (FSM) operation, enabling it to manage traffic in scenarios with emergency vehicles, high traffic density, and low traffic density. This proposed system can alleviate intersection congestion by controlling access and allocating time effectively. In conclusion, the project ensures the smooth passage of emergency vehicles by continuously monitoring their presence and giving them priority in traffic flow.