Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Perbandingan Algoritma Random Forest Dan Decision Tree Pada Prediksi Penyakit Diabetes Ekrinifda, Ardilla; Aulia Ramadhan, Salsabila; Marvella, Shera; Fansyuri, Maulana
Jurnal Riset Informatika dan Inovasi Vol 2 No 11 (2025): JRIIN: Jurnal Riset Informatika dan Inovasi
Publisher : shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes melitus adalah penyakit kronis dengan prevalensi yang meningkat secara global. Diagnosis dini sangat penting untuk mencegah komplikasi, tetapi metode tradisional sering memerlukan waktu dan akses yang terbatas. Penelitian ini membandingkan algoritma Random Forest dan Decision Tree dalam memprediksi diabetes menggunakan dataset dari Kaggle. Algoritma ini dipilih karena kemampuan mereka menangani data kesehatan yang kompleks. Random Forest menggunakan pendekatan ensemble learning untuk meningkatkan akurasi dan stabilitas, sedangkan Decision Tree menawarkan interpretasi hasil yang lebih intuitif. Evaluasi dilakukan dengan metrik seperti akurasi, presisi, recall, dan Area Under Curve (AUC). Hasil menunjukkan Random Forest unggul dalam akurasi (78,78%) dan stabilitas dibandingkan Decision Tree (77,34%). Namun, Decision Tree lebih efisien secara komputasi dan mudah diinterpretasi. Analisis ini memberikan wawasan dalam memilih algoritma prediksi diabetes yang sesuai berdasarkan kebutuhan klinis dan sumber daya. Penelitian ini merekomendasikan Random Forest untuk keandalan prediksi dan Decision Tree untuk skenario yang memerlukan efisiensi dan interpretabilitas. Implementasi lebih lanjut diharapkan membantu tenaga medis dalam pengambilan keputusan yang lebih baik.
Penegakan Hukum Animal Abuse dan Peningkatan Kesejahteraan Hewan di Kota Makassar Melalui Veteriner Forensik Febrianti, Ira; Ramadhansyah Prasetia, Muhammad; Nurfadilla, Nurfadilla; Aulia Ramadhan, Salsabila; Rayhan Putra Hasrun, Ahmad; Djaelani Prasetya, Muhammad
UNES Law Review Vol. 6 No. 1 (2023)
Publisher : Universitas Ekasakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31933/unesrev.v6i1.1098

Abstract

Animal welfare is proven by fulfilling the 5 principles of animal freedom or five freedoms, namely freedom from hunger and thirst, from discomfort, from pain, injury, or disease, freedom to express normal behavior, and freedom from fear and distress. This research focuses on dogs and cats because in line with cases that occurred in Makassar City, these two animals are often victims of violence. The research aims to describe the public's perception in Makassar City regarding animal welfare, the police's perception of forensic veterinary, the application of forensic veterinary as a law enforcement tool, as well as solutions for implementing forensic veterinary to protect animal rights in Makassar City. This research uses a mixed method with a Sequential Explanatory approach model. The first research used quantitative methods to answer the first to third problem formulations and qualitative methods to answer the fourth problem formulation. Data analysis using quantitative methods through descriptive analysis using the SPSS application. Meanwhile, qualitative data analysis involves reducing the data to concluding. The research results show that public knowledge regarding animal welfare is very low and police investigators' knowledge of veterinary forensics is quite good, but not yet in line with its implementation. Therefore, veterinary forensics is present as an effort to enforce the law against acts of animal violence in realizing animal welfare in the city of Makassar.