Claim Missing Document
Check
Articles

Found 2 Documents
Search

Green Synthesis of Zinc Oxide Particles using Banana Peels and Tea Leaves Extracts for Rhodamine B Photodegradation Pratomo, Uji; Fransisca, Natasha; Afriani, Zahra; Sinambela, Ayu Jelita; Zahra, Nazwa Alya; Suwarno, Nelson Indarto; Sumeru, Husain Akbar; Kurnia, Irwan; Primadona, Indah; Edwin, Rudiawan
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 10, No. 2, November 2024
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v10i2.41793

Abstract

Rhodamine B is a widely used dye in the textile sector. However, the wastewater produced during the dyeing process presents a notable source of pollution, contaminating water and posing a threat to aquatic ecosystems due to its presence in liquid waste. Photocatalysis is a technique for breaking down toxic textile dye waste a semiconductor as a catalyst, valued for its high sensitivity and eco-friendly nature. In this research, zinc oxide particles were synthesized via a green synthesis approach using precipitation, employing natural capping agents from banana peel and tea leaf to degrade the synthetic dye of rhodamine B. The catalyst material was characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet-visible diffuse reflectance (UV-DRS). The photodegradation performance of rhodamine B was determined under UV light exposure for 3 hours. The XRD spectra of ZnO show the specific peaks of 2θ at 31.8°, 34.5°, and 36.3° with a crystallinity value of around 79.50%. The SEM result shows that the morphology of ZnO is in cotton-like form with a minimum band gap of 3.17 eV. The cotton-like ZnO particles demonstrated superior photodegradation efficiency for Rhodamine B, achieving 61.8%, compared to 47.9% with pure ZnO. It suggests that synthesizing ZnO particles with banana peels and tea leaf extracts boosts photodegradation efficiency by up to 20% compared to pure ZnO. This research highlights the potential of utilizing eco-friendly and sustainable methods as a greener approach for reducing waste in environmental applications.
Study on Properties Influence of Carbon Fiber-reinforced Polyimide Composites using Melamine as a Crosslinking Agent Shiediqque, Apang Djafar; Widarman, Agung; Suriaman, Irwan; Zahra, Ghefira Iftina; Maesaroh, Kiki; Edwin, Rudiawan; Laksmono, Joddy Arya
Molekul Vol 20 No 1 (2025)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2025.20.1.13317

Abstract

ABSTRACT: Advances in carbon fiber reinforced polymer (CFRP) technology remain critical, particularly in meeting the demand for lightweight and durable materials in the transportation industry. With the advent of electric vehicles (EVs), there is a pressing need for composite materials that offer not only exceptional mechanical strength but also high-temperature stability and heat resistance. Polyimide, known for its excellent heat resistance and flame retardancy properties, is an optimal choice for developing such composites. Furthermore, the incorporation of melamine as a crosslinker in polyimide has been shown to significantly enhance its performance. Our study involved the production of a carbon fiber reinforced composite with a melamine crosslinked polyimide matrix (CFMPI), to meet these critical requirements. The composite showed a tensile strength of 84.17 MPa, a tensile modulus of 1899.14 MPa at 1.5% mole substitution of 4,4’‑oxydianiline by melamine as a crosslinker for polyimide with thermal stability up to 562 °C. These results indicated that this composite material is highly suitable for use in EVs. Keywords: advanced composites, carbon fiber reinforced polymer, lightweight materials, melamine-crosslinker, polyimide composites.