Claim Missing Document
Check
Articles

Found 3 Documents
Search

PEMANFAATAN NUMERICAL WEATHER PREDICTION DAN CITRA SATELIT HIMAWARI-9 DALAM ANALISIS KONDISI ATMOSFER SAAT HUJAN LEBAT: (Studi Kasus 14 Maret 2024) Rafi, Rayhan; Syahid, Wisnu; Kaizzi Larasati, Kanaya; Aydin Umardani, Syarif Abdillah; Abigael, Febby Debora; Kristianto, Aries
JTIK (Jurnal Teknik Informatika Kaputama) Vol. 9 No. 1 (2025): Volume 9, Nomor 1, Januari 2025
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jtik.v9i1.910

Abstract

Heavy rainfall occurred in the Special Region of Yogyakarta on March 14, 2024. This rainfall event was categorized as extreme weather, as data from the Regional Disaster Management Agency (BPBD) reported damage in 496 affected locations. Heavy rainfall can occur due to atmospheric instability caused by the growth of convective clouds (cumulonimbus). The phenomenon of heavy rainfall was monitored using remote sensing systems in the form of satellites to observe and analyze the event. Yogyakarta's topography explains the use of ECMWF ERA-5 model data to identify wind distribution patterns (streamlines) influenced by westerly winds. The Convective Cloud Overlay (CCO), red-green-blue (RGB), and High-resolution Cloud Analysis Information (HCAI) methods were applied to interpret cumulonimbus cloud development, observed from the formation phase (08:00 UTC) to the dissipation phase (18:00 UTC). Observations indicated a decrease in cloud-top temperature to -80°C at 09:00 UTC, followed by dissipation with a temperature of -20°C at 18:00 UTC. Atmospheric instability indices were analyzed using numerical weather prediction (NWP) methods to obtain quantitative values for indices contributing to heavy rainfall, such as SSI, LI, KI, TT, SWEAT, and CAPE. This study concluded that a "moderate" increase in instability index values explained why convective cloud development occurred.
Validation of Atmospheric Instability Indices from Himawari-9 Against Radiosonde Observations Rafi, Rayhan; Citra, Roihan Fauzi; Buti, Delfiana Yoventa
Science Education and Application Journal Vol 7 No 1 (2025): Science Education and Application Journal
Publisher : Program Studi Pendidikan IPA, Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30736/seaj.v7i1.1166

Abstract

Validation of Atmospheric Instability Indices from Himawari-9 Against Radiosonde Observations. Remote sensing is crucial in measuring atmospheric instability by providing continuous spatial and temporal observations, often through satellite-based retrieval algorithms and numerical models. This study evaluates atmospheric instability indices derived from Numerical Weather Prediction (NWP) models using Himawari-9 satellite data. The results are compared with Radiosonde observations at the Tunggal Wulung Meteorological Observation Post, Cilacap, Central Java. The observation period includes four-time samples of Radiosonde observations identified with essential weather events. Atmospheric instability indices such as Showalter Index (SI), Lifting Index (LI), K Index (KI), Severe Weather Threat (SWEAT), and Convective Available Potential Energy (CAPE) are used to analyze the dynamics of atmospheric instability that trigger important weather events such as rain. The research method involves processing Radiosonde observation data provided by Wyoming and satellite imagery using GMLSPD software. The results of this study reveal cloud images and instability index values ​​that explain the occurrence of essential weather events with a moderate category. Although some parameter values ​​differ from Radiosonde data, the NWP-GSM indices from Himawari-9 are in good agreement with Radiosonde measurements for certain instability index categories. These findings suggest that Himawari-9 GSM can complement and be an alternative to Radiosonde observations by providing continuous atmospheric instability analysis, especially during periods without Radiosonde measurements. This shows its potential to improve weather monitoring and forecasting. However, further research such as high computing power, seasonal pattern analysis, and reducing errors such as parallax errors are still needed to maximize the findings.
Identifikasi penyebab awan konvektif pada fenomena hujan ekstrem disertai es berbasis citra radar dual polar Rafi, Rayhan; Kuncoro, Dwi; Arzhida, Bima; Jannah Indriyani, Noor; Warjono, Warjono
Jurnal Penelitian Saintek Vol 30, No 2 (2025)
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jps.v30i2.89950

Abstract

Pada 11 Maret 2025, wilayah Daerah Istimewa Yogyakarta (DIY) mengalami kejadian cuaca ekstrem berupa hujan lebat yang disertai angin kencang, kilat, dan disertai es. Fenomena ini menimbulkan dampak signifikan di berbagai lokasi, terutama di Kabupaten Sleman, Kota Yogyakarta, dan Kabupaten Bantul. Penelitian ini bertujuan untuk menganalisis dinamika atmosfer yang menyebabkan terbentuknya awan konvektif penghasil hujan es di wilayah tersebut dengan pendekatan multi-instrumentasi meteorologi. Metode yang digunakan meliputi analisis peta streamline, data sinoptik dari Stasiun Klimatologi Yogyakarta, citra satelit Himawari-9 (HCAI), data radar cuaca dual polar dari Stasiun Meteorologi Ahmad Yani, serta validasi hujan menggunakan data pos pengamatan. Hasil analisis menunjukkan bahwa terdapat konvergensi angin lokal dan penurunan tekanan udara yang signifikan, yang memicu terbentuknya awan Cumulonimbus secara cepat dan intensif. Produk radar (CMAX, VCUT, ZHAIL, HAILSZ, dan SWI) mengindikasikan keberadaan struktur awan konvektif kuat dengan reflektivitas tinggi (>60 dBZ), pola weak echo region (WER), overhang echo (OR), dan kemunculan hail spike atau three body scatter spike (TBSS) yang menguatkan dugaan adanya partikel es besar di dalam awan. Estimasi ukuran hail mencapai 10–20 mm dengan probabilitas kejadian hujan es lebih dari 80%. Validasi data curah hujan dari 121 titik pengamatan menunjukkan distribusi hujan intensitas sedang hingga lebat dengan curah hujan tertinggi sebesar 74 mm/hari di Kecamatan Minggir, Sleman. Studi ini menegaskan pentingnya integrasi data satelit, radar, dan pengamatan permukaan dalam mendeteksi dan memahami kejadian cuaca ekstrem di wilayah tropis.