Claim Missing Document
Check
Articles

Found 5 Documents
Search

PEMANFAATAN NUMERICAL WEATHER PREDICTION DAN CITRA SATELIT HIMAWARI-9 DALAM ANALISIS KONDISI ATMOSFER SAAT HUJAN LEBAT: (Studi Kasus 14 Maret 2024) Rafi, Rayhan; Syahid, Wisnu; Kaizzi Larasati, Kanaya; Aydin Umardani, Syarif Abdillah; Abigael, Febby Debora; Kristianto, Aries
JTIK (Jurnal Teknik Informatika Kaputama) Vol. 9 No. 1 (2025): Volume 9, Nomor 1, Januari 2025
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jtik.v9i1.910

Abstract

Heavy rainfall occurred in the Special Region of Yogyakarta on March 14, 2024. This rainfall event was categorized as extreme weather, as data from the Regional Disaster Management Agency (BPBD) reported damage in 496 affected locations. Heavy rainfall can occur due to atmospheric instability caused by the growth of convective clouds (cumulonimbus). The phenomenon of heavy rainfall was monitored using remote sensing systems in the form of satellites to observe and analyze the event. Yogyakarta's topography explains the use of ECMWF ERA-5 model data to identify wind distribution patterns (streamlines) influenced by westerly winds. The Convective Cloud Overlay (CCO), red-green-blue (RGB), and High-resolution Cloud Analysis Information (HCAI) methods were applied to interpret cumulonimbus cloud development, observed from the formation phase (08:00 UTC) to the dissipation phase (18:00 UTC). Observations indicated a decrease in cloud-top temperature to -80°C at 09:00 UTC, followed by dissipation with a temperature of -20°C at 18:00 UTC. Atmospheric instability indices were analyzed using numerical weather prediction (NWP) methods to obtain quantitative values for indices contributing to heavy rainfall, such as SSI, LI, KI, TT, SWEAT, and CAPE. This study concluded that a "moderate" increase in instability index values explained why convective cloud development occurred.
Validation of Atmospheric Instability Indices from Himawari-9 Against Radiosonde Observations Rafi, Rayhan; Citra, Roihan Fauzi; Buti, Delfiana Yoventa
Science Education and Application Journal Vol 7 No 1 (2025): Science Education and Application Journal
Publisher : Program Studi Pendidikan IPA, Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30736/seaj.v7i1.1166

Abstract

Validation of Atmospheric Instability Indices from Himawari-9 Against Radiosonde Observations. Remote sensing is crucial in measuring atmospheric instability by providing continuous spatial and temporal observations, often through satellite-based retrieval algorithms and numerical models. This study evaluates atmospheric instability indices derived from Numerical Weather Prediction (NWP) models using Himawari-9 satellite data. The results are compared with Radiosonde observations at the Tunggal Wulung Meteorological Observation Post, Cilacap, Central Java. The observation period includes four-time samples of Radiosonde observations identified with essential weather events. Atmospheric instability indices such as Showalter Index (SI), Lifting Index (LI), K Index (KI), Severe Weather Threat (SWEAT), and Convective Available Potential Energy (CAPE) are used to analyze the dynamics of atmospheric instability that trigger important weather events such as rain. The research method involves processing Radiosonde observation data provided by Wyoming and satellite imagery using GMLSPD software. The results of this study reveal cloud images and instability index values ​​that explain the occurrence of essential weather events with a moderate category. Although some parameter values ​​differ from Radiosonde data, the NWP-GSM indices from Himawari-9 are in good agreement with Radiosonde measurements for certain instability index categories. These findings suggest that Himawari-9 GSM can complement and be an alternative to Radiosonde observations by providing continuous atmospheric instability analysis, especially during periods without Radiosonde measurements. This shows its potential to improve weather monitoring and forecasting. However, further research such as high computing power, seasonal pattern analysis, and reducing errors such as parallax errors are still needed to maximize the findings.
Identification of the causes of convective clouds in extreme rainfall events with hail based on dual-polar radar imagery Rafi, Rayhan; Kuncoro, Dwi; Arzhida, Bima; Jannah Indriyani, Noor; Warjono, Warjono
Jurnal Penelitian Saintek Vol 30, No 2 (2025)
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jps.v30i2.89950

Abstract

This study aims to analyze the atmospheric dynamics behind the formation of convective clouds that produce hail through a multi-instrumental approach. The methods used include streamline map analysis, synoptic data from the Yogyakarta Climatology Station, Himawari-9 HCAI satellite imagery, and dual-polar radar data from the Ahmad Yani Meteorological Station. The results reveal local wind convergence and significant air pressure drop, triggering rapid and intensive formation of Cumulonimbus clouds. Radar products, such as CMAX and HAILSZ, indicate high reflectivity and the presence of large hail particles within the clouds. Hail size is estimated to range from 10–20 mm with a probability of more than 80%. Rain validation shows the highest accumulation of 74 mm/day in Minggir District, Sleman. This study emphasizes the importance of integrating satellite, radar, and surface observation data for detecting extreme weather in tropical regions.
OTOMATISASI DAN VALIDASI PEMROSESAN DATA GSMAP UNTUK MONITORING CURAH HUJAN HARIAN SPASIAL DI MALUKU UTARA Rafi, Rayhan; Amarullah, Nadia Aurellia; Kawilohi, Kevin Rizky Crusia; Chortimah, Resti Maulina Chusnul; Norman, Yosik
Al-Irsyad Journal of Physics Education Vol 5 No 1 (2026): Januari 2026
Publisher : Sekolah Tinggi Keguruan dan Ilmu Pendidikan Darud Da'wah Wal Irsyad Pinrang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58917/ijpe.v5i1.641

Abstract

Provinsi Maluku Utara merupakan wilayah kepulauan dengan variabilitas curah hujan yang tinggi, namun pemantauan kondisi meteorologis sering terkendala oleh keterbatasan jaringan pengamatan permukaan yang tidak merata. Pemanfaatan data satelit Global Satellite Mapping of Precipitation (GSMaP) menawarkan solusi alternatif untuk pemantauan hujan spasial, namun akurasinya perlu divalidasi terlebih dahulu terhadap kondisi lokal. Penelitian ini bertujuan untuk melakukan otomatisasi pemrosesan dan validasi akurasi estimasi curah hujan harian GSMaP v8 terhadap data Automatic Weather Station (AWS) di empat lokasi strategis: Labuha, Tobelo, Pelabuhan Ternate, dan Stageof Ternate. Validasi dilakukan menggunakan metode statistik Pearson Correlation (r), Root Mean Square Error (RMSE), dan Relative Bias (RB). Hasil analisis menunjukkan bahwa pada skala akumulasi harian, GSMaP memiliki hubungan linear yang moderat terhadap data observasi dengan nilai koefisien korelasi (r) gabungan sebesar 0,462. Tingkat kesalahan estimasi ditunjukkan oleh nilai RMSE sebesar 15,67 mm/hari dengan kecenderungan overestimate sebesar 11,4%. Akurasi GSMaP di wilayah ini teridentifikasi dipengaruhi oleh "efek pulau kecil" (small island effect) dan kesalahan sensor pada garis pantai (coastline error) yang signifikan di wilayah kepulauan. Penelitian ini menyimpulkan bahwa meskipun GSMaP mampu menangkap pola umum kejadian hujan harian, penggunaan data untuk analisis lanjutan di Maluku Utara memerlukan koreksi bias lebih lanjut.
IDENTIFIKASI DAN SIMULASI SEBARAN ABU VULKANIK GUNUNG LEWOTOBI LAKI-LAKI MENGGUNAKAN METODE RGB HIMAWARI-9 DAN MODEL HYSPLIT (STUDI KASUS: 15 OKTOBER 2025) Rafi, Rayhan; Maldina, Rica Azzura; Al-Ghifari, Mhd. Habibi; Zakir, Achmad; Mulya, Aditya
(JITEK)Jurnal Ilmiah Teknosains Vol 11, No 2/Nov (2025): Jitek
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/jitek.v11i2/Nov.25618

Abstract

Erupsi Gunung Lewotobi Laki-laki pada 15 Oktober 2025 melepaskan abu vulkanik yang berpotensi membahayakan keselamatan penerbangan dan lingkungan sekitar. Penelitian ini bertujuan untuk mengidentifikasi pola sebaran spasial debu vulkanik dan mensimulasikan lintasannya menggunakan integrasi data penginderaan jauh dan pemodelan numerik. Metode yang digunakan meliputi analisis citra satelit Himawari-9 dengan teknik RGB Komposit untuk visualisasi real-time, serta model HYSPLIT untuk simulasi trajektori dan dispersi. Hasil analisis citra satelit mengidentifikasi lima fase aktivitas erupsi mulai pukul 00.00 UTC hingga 11.00 UTC, dengan sebaran visual dominan bergerak ke arah Barat Laut dan Utara. Temuan ini divalidasi dengan simulasi HYSPLIT dan analisis streamline angin yang menunjukkan mekanisme erupsi multi-lapisan. Angin pada lapisan bawah (1.600 m) dan menengah (4.000 m) membawa material vulkanik ke arah Barat dan Barat Laut, sedangkan lapisan atas (9.000 m) cenderung ke Timur Laut. Keselarasan antara observasi satelit dan model dispersi mengonfirmasi bahwa sebagian besar massa erupsi bergerak pada lapisan atmosfer bawah hingga menengah. Penelitian ini menunjukkan bahwa kombinasi metode RGB Himawari-9 dan HYSPLIT efektif untuk pemantauan dan mitigasi dampak abu vulkanik.