Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhanced Human Hitting Movement Recognition Using Motion History Image and Approximated Ellipse Techniques Diyasa, I Gede Susrama Mas; P, Made Hanindia; Zamri, Mohd; Agussalim, Agussalim; Humairah, Sayyidah; A, Denisa Septalian; Umam, Faikul
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1599

Abstract

Recognition of human hitting movement in a more specific context of sports like boxing is still a hard task because the existing systems use manual observation which could be easily flawed and highly inaccurate. However, in this study, an attempt is made to present an automated system designed for this purpose to detect a specific hitting movement commonly known as a punch using video input and image processing techniques. The system employs Motion History Image (MHI) to model trajectories of motions and combine them with other parameters to reconstruct movements which tend to have a temporal component. Thus, CCTV cameras set at different positions (front, back, left and right) enable the system to identify several types of punches including Jab, Hook, Uppercut and Combination punches. The most important aspect of this work is the proposal of MHI and the Ellipse approximation which is quicker in the integration of both than other sophisticated systems which take a considerable duration in computations. Therefore, the system classifies C_motion, Sigma Theta, and Sigma Rho parameters to distress hitting from non-hitting movements. Evaluation on a dataset captured from multiple viewpoints establishes that the system performs well achieving the goal of 93 percent when detecting both the hitting and the non-hitting motion. These results demonstrate the system’s superiority to the system based such detection methods. This study paves the way for other applications in real-time such as sports analysis, security surveillance, and healthcare requiring greater efficiency in and accuracy of human movement assessment. The focus of future work may be in the direction of improving the recognition of slower movements, also modifying the system for more dynamic conditions in the future.
Improving Classification Accuracy of Breast Ultrasound Images Using Wasserstein GAN for Synthetic Data Augmentation Mas Diyasa, I Gede Susrama; Humairah, Sayyidah; Puspaningrum, Eva Yulia; Durry, Fara Disa; Lestari, Wahyu Dwi; Caesarendra, Wahyu; Dewi, Deshinta Arrova; Aryananda, Rangga Laksana
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.25075

Abstract

Breast cancer remains one of the most prevalent cancers in Indonesia, and early detection plays a vital role in improving patient outcomes. Ultrasound imaging is a non-invasive and accessible technique used to classify breast conditions into normal, benign, or malignant categories. The advancement of deep learning, particularly Transfer Learning with Convolutional Neural Networks (CNNs), has significantly enhanced the performance of automated image classification. However, the effectiveness of CNNs heavily relies on large, balanced datasets—resources that are often limited and imbalanced in medical domains. To address this issue, this study explores the use of Wasserstein Generative Adversarial Networks (WGAN) for synthetic data augmentation. WGAN is capable of learning the underlying distribution of real ultrasound images and generating high-quality synthetic samples. The inclusion of the Wasserstein distance stabilizes training, with convergence observed around 2500–3000 epochs out of 5000. While synthetic data improves classifier performance, there remains a potential risk of overfitting, particularly when the synthetic images closely mirror the training data. Compared to traditional augmentation techniques such as rotation, flipping, and scaling, WGAN-generated data provides more diverse and realistic representations. Among the tested models, VGG16 achieved the highest accuracy of 83.33% after WGAN augmentation. Nonetheless, computational resource limitations posed challenges in training stability and duration. Furthermore, issues related to model generalizability, as well as ethical and patient privacy considerations in using synthetic medical data, must be addressed to ensure responsible deployment in real-world clinical settings.