p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal Infotekmesin
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simulasi Computational Fluid Dynamics (CFD) untuk Optimalisasi Proses Perekatan pada Oven Bambu Laminasi Bahari, Galuh; Septhia Irawati, Inggar; Aris Hendaryanto, Ignatius; Ayu Putri Pratiwi, Ilham; Krisnaputra, Radhian; Sugiyanto; Wijoyo, Joannes Bimo
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2567

Abstract

The utilization of bamboo in architecture and construction as an eco-friendly alternative to wood is steadily increasing. While ovens are crucial tools in the production of laminated bamboo, particularly for heating during the bonding process, research on ovens specifically designed for bamboo lamination remains scarce. This study aims to optimize the design of laminated bamboo ovens using Computational Fluid Dynamics (CFD) simulations to achieve uniform heat distribution and maximize thermal efficiency. Three design iterations were tested: Iteration 1 with an air velocity of 4 m/s, Iteration 2 with 1.5 m/s, and Iteration 3 with 3 m/s. The results revealed that Iteration 1 exhibited uneven heat distribution, with initial temperatures reaching 1175 K before dropping sharply to 800 K. Iteration 2 showed slower initial heating, achieving a final temperature of 360 K, but heat distribution remained suboptimal. Iteration 3 delivered the best performance, achieving uniform and stable heat distribution near the target temperature of 473 K (200 °C). Overall, Iteration 3 demonstrated the most efficient thermal performance, not only meeting the target temperature with consistent heat distribution but also enhancing the overall heating efficiency of the oven.
Simulasi Computational Fluid Dynamics (CFD) untuk Optimalisasi Proses Perekatan pada Oven Bambu Laminasi Bahari, Galuh; Septhia Irawati, Inggar; Aris Hendaryanto, Ignatius; Ayu Putri Pratiwi, Ilham; Krisnaputra, Radhian; Sugiyanto; Wijoyo, Joannes Bimo
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2567

Abstract

The utilization of bamboo in architecture and construction as an eco-friendly alternative to wood is steadily increasing. While ovens are crucial tools in the production of laminated bamboo, particularly for heating during the bonding process, research on ovens specifically designed for bamboo lamination remains scarce. This study aims to optimize the design of laminated bamboo ovens using Computational Fluid Dynamics (CFD) simulations to achieve uniform heat distribution and maximize thermal efficiency. Three design iterations were tested: Iteration 1 with an air velocity of 4 m/s, Iteration 2 with 1.5 m/s, and Iteration 3 with 3 m/s. The results revealed that Iteration 1 exhibited uneven heat distribution, with initial temperatures reaching 1175 K before dropping sharply to 800 K. Iteration 2 showed slower initial heating, achieving a final temperature of 360 K, but heat distribution remained suboptimal. Iteration 3 delivered the best performance, achieving uniform and stable heat distribution near the target temperature of 473 K (200 °C). Overall, Iteration 3 demonstrated the most efficient thermal performance, not only meeting the target temperature with consistent heat distribution but also enhancing the overall heating efficiency of the oven.