Claim Missing Document
Check
Articles

Found 3 Documents
Search

Re-Design User Interface (UI) Aplikasi Mobile Domino’s Pizza Berdasarkan Hasil Analisis User Experience (UX) Putra, Gustian Rama; Forca, Adrian Jaleco; Sardjono, Wahyu; Nursetiaji, Oktavian
Jurnal Teknologi dan Informasi (JATI) Vol 15 No 1 (2025): Jurnal Teknologi dan Informasi (JATI)
Publisher : Program Studi Sistem Informasi, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/jati.v15i1.13657

Abstract

Perkembangan masyarakat dalam penggunaan gadget khususnya Mobile dalam aktivitas sehari-hari di era society 5.0 saat ini, memberikan tantangan tersendiri bagi pelaku usaha jasa dan pemasaran dalam pelayanan dan pemasaran suatu produk. Domino's Pizza, salah satu brand yang menyediakan makanan dan minuman, saat ini memiliki jumlah outlet yang cukup banyak di Indonesia, dari hasil pengamatan yang dilakukan terhadap pelanggan Domino's Pizza, melalui observasi dan wawancara dengan pengguna aplikasi Mobile Domino's Pizza, terdapat beberapa keluhan terkait pengalaman pengguna yang kurang memuaskan. Pengguna merasa bahwa proses melihat produk dan melakukan pemesanan dalam aplikasi ini terasa kurang intuitif dan menyulitkan dibandingkan dengan aplikasi pemesanan mobile dari merek penyedia makanan dan minuman sejenis. Misalnya, beberapa pengguna mengungkapkan bahwa navigasi aplikasi tidak responsif, fitur pencarian produk sulit digunakan, dan proses checkout yang memakan waktu. Hal ini menimbulkan ketidakpuasan di kalangan pelanggan, yang berdampak pada keputusan mereka untuk menggunakan kembali aplikasi tersebut dibandingkan dengan aplikasi kompetitor yang lebih user-friendly. Dengan penerapan User Experiences (UX), penelitian ini bertujuan untuk mengembangkan User Interface (UI) aplikasi Mobile Domino's Pizza, dengan menggunakan pendekatan Keep it Simple, Stupid (KISS), penelitian ini menghasilkan prototipe aplikasi Mobile Domino's Pizza baru yang bertujuan untuk memberikan hal positif yang signifikan bagi Aplikasi Mobile Domino's Pizza untuk memberikan kepuasan dan kenyamanan pelanggan dalam berinteraksi secara online.
Transforming EEG into Scalable Neurotechnology: Advances, Frontiers, and Future Directions Pamungkas, Yuri; Triandini, Evi; Forca, Adrian Jaleco; Sangsawang, Thosporn; Karim, Abdul
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 3 (2025): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i3.13824

Abstract

Electroencephalography (EEG) is a key neurotechnology that enables non-invasive, high-temporal resolution monitoring of brain activity. This review examines recent advancements in EEG-based neuroscience from 2021 to 2025, with a focus on applications in neurodegenerative disease diagnosis, cognitive assessment, emotion recognition, and brain-computer interface (BCI) development. Twenty peer-reviewed studies were selected using predefined inclusion criteria, emphasizing the use of machine learning on EEG data. Each study was assessed based on EEG settings, feature extraction, classification models, and outcomes. Emerging trends show increased adoption of advanced computational techniques such as deep learning, capsule networks, and explainable AI for tasks like seizure prediction and psychiatric classification. Applications have expanded to real-world domains including neuromarketing, emotion-aware architecture, and driver alertness systems. However, methodological inconsistencies (ranging from varied preprocessing protocols to inconsistent performance metrics) pose significant challenges to reproducibility and real-world deployment. Technical limitations such as inter-subject variability, low spatial resolution, and artifact contamination were found to negatively impact model accuracy and generalizability. Moreover, most studies lacked transparency regarding bias mitigation, dataset diversity, and ethical safeguards such as data privacy and model interpretability. Future EEG research must integrate multimodal data (e.g., EEG-fNIRS), embrace real-time edge processing, adopt federated learning frameworks, and prioritize personalized, explainable models. Greater emphasis on reproducibility and ethical standards is essential for the clinical translation of EEG-based technologies. This review highlights EEG’s expanding role in neuroscience and emphasizes the need for rigorous, ethically grounded innovation.
Evaluation of Developed Alumni Information Management System (AIMS) Using ISO 25010:2015 Jornadal, Mary Llourane Faith; Forca, Adrian Jaleco; Rama Putra, Gustian
Jurnal Informatika dan Rekayasa Perangkat Lunak Vol. 6 No. 2 (2025): Volume 6 Number 2 June 2025
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jatika.v6i2.134

Abstract

This study evaluated the Alumni Information Management System (AIMS) developed to enhance alumni tracking, career services, and institutional engagement, utilizing the ISO/IEC 25010:2015 software quality model. The evaluation focused on key characteristics: functionality, usability, reliability, performance efficiency, security, maintainability, and portability, to assess the system's effectiveness. An Iterative Software Development Life Cycle (SDLC) was employed during the development phase, allowing for incremental improvements and incorporating user feedback. Evaluation was conducted using a researcher-designed instrument aligned with the ISO/IEC 25010:2015 standard. The results indicate that the AIMS received a "Very High" rating across all evaluated characteristics, with an overall mean of 4.68, signifying strong user satisfaction and system efficacy. This study highlights the AIMS’s strengths and provides insights for potential improvements, ensuring its continued effectiveness in supporting alumni relations and institutional goals.