Wulandari, Indana Zulfa
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Korespondensi Hasil Produksi Budidaya Perikanan Berdasarkan Jenis Budidaya dan Pembagian Wilayah di Indonesia Abdillah, Adrian Wahyu; Marthabakti, CitraWani; Budijono, Gabriella Agnes; Wulandari, Indana Zulfa; Amelia, Dita; Mardianto, M. Fariz Fadillah; Ana, Elly
Jurnal Sains Matematika dan Statistika Vol 11, No 1 (2025): JSMS Januari 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jsms.v11i1.27913

Abstract

Indonesia dikenal sebagai negara maritim karena mayoritas wilayahnya terdiri dari perairan sehingga sektor perikanan menjadi bagian integral dari kehidupan dan ekonomi masyarakat Indonesia. Produk perikanan menjadi salah satu komoditas ekspor utama Indonesia. Adanya perbedaan faktor geografis dan topografis di berbagai wilayah Indonesia berpengaruh terhadap jenis budidaya yang paling cocok pada keberhasilan budidaya perikanan. Oleh karena itu, penelitian menganalisis kecenderungan dari jenis budidaya perikanan dengan wilayah Indonesia secara geografis. Hasil pencatatan dari Produksi Budidaya Perikanan Menurut Provinsi dan Jenis Budidaya pada tahun 2021 digunakan sebagai data sekunder yang akan dianalisis. Pendekatan statikstika yang dipilih yaitu analisis korespondensi dengan jenis budidaya perikanan dan pembagian wilayah Indonesia sebagai variabel analisis. Sebelum dilakukan analisis korespondensi, diperlukan uji independensi yang hasilnya adalah terdapat keterkaitan yang nyata antar kedua variabel. Dari hasil analisis korespondensi diperoleh bahwa jenis budidaya jaring apung tawar, jaring apung laut, tambak intensif, tambak semi intensif, kolam air tenang, kolam air deras, dan minapadi sawah lebih cenderung dikembangkan di wilayah barat. Sedangkan jenis budidaya jaring tancap tawar, tambak sederhana. karamba, dan rumput laut lebih cenderung dikembangkan di wilayah tengah. Dan jenis budidaya laut lainnya lebih cenderung dikembangkan di wilayah timur Indonesia. Dari hasil ini, para pelaku produksi perikanan budidaya dapat menggunakannya sebagai acuan dalam memilih jenis budidaya yang tepat sehingga hasil produksi dapat lebih maksimal.
Modeling Prevalence of Hypertension in Indonesia with Multivariate Adaptive Regression Splines Method Suliyanto, Suliyanto; Saifudin, Toha; Naura, Sheila Sevira Asteriska; Dewanty, Sanda Insania; Wulandari, Indana Zulfa; Aflaha, Nabila Shafa; Aulia, Niswa Faizah
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 9, No 2 (2025): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v9i2.28392

Abstract

Hypertension is one of the important public health problems in Indonesia, which contributes to the high prevalence of non-communicable diseases. This study aims to model the prevalence of hypertension in Indonesia using the Multivariate Adaptive Regression Splines (MARS) method to identify significant predictors and their interactions. The data used was secondary data from the 2023 Indonesian Health Survey, including variables such as smoking prevalence, physical inactivity, dietary habits (consumption of fatty and sweet foods), lack of fruit and vegetable consumption, and obesity prevalence. The MARS method was used to analyse the nonlinear relationships and interactions between these predictors. After a trial-and-error process to determine the optimal number of basis functions (BF), maximum interactions (MI), and minimum observations (MO), the best model was achieved with BF = 18, MI = 3, and MO = 1. This model produced a Generalised Cross Validation (GCV) value of 13.428 and R-Square of 0.278. This fairly low R-Square value indicates that the factors analysed have contributed to the variation in hypertension prevalence, but there are still other aspects that can be taken into account to improve the predictive power of the model. The significant predictor variables were consumption of fatty foods (X3), lack of physical activity (X2), and consumption of sweets (X4), with the highest importance on X3 (100%). The findings reveal that interactions between variables, such as dietary habits and physical inactivity, significantly influence the prevalence of hypertension. For example, higher consumption of fatty and sweet foods combined with low physical activity increases the risk of hypertension. These results demonstrate the effectiveness of the MARS method in capturing complex and nonlinear relationships and serve as findings that highlight the need for health policies that focus on healthy diets and increased physical activity, in line with Goal 3 of the SDGs, “Good Health and Well-Being,” which aims to reduce premature mortality from noncommunicable diseases. Recommended interventions include nutrition education campaigns and community-based exercise programs to reduce the prevalence of hypertension in Indonesia.