Claim Missing Document
Check
Articles

Found 4 Documents
Search

Penerapan Model Logistik Untuk Optimalisasi Portofolio Investasi Saham Syahputra, Mario; Clara, Nur Cellia; Kinanti, Tri; Dongoran, Raisha Zuhaira
Basis : Jurnal Ilmiah Matematika Vol. 4 No. 1 (2025): BASIS: Jurnal Ilmiah Matematika
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/basis.v4i1.1434

Abstract

Penelitian ini bertujuan untuk mengoptimalkan portofolio investasi saham dengan menggunakan model regresi logistik, dengan mempertimbangkan variabel volume perdagangan, harga historis, dan price to earning ratio (P/E). Data yang digunakan merupakan data sekunder dari 20 emiten yang terdaftar di Bursa Efek Indonesia, diambil pada tanggal 30 Oktober 2024. Pengolahan data dilakukan dengan menerapkan model regresi logistik untuk menganalisis hubungan antara variabel independen dan probabilitas kenaikan harga saham. Model ini dilatih dengan data historis saham untuk mengestimasi kemungkinan kenaikan harga, yang kemudian digunakan sebagai dasar dalam pemilihan saham optimal. Hasil penelitian menunjukkan bahwa dari 20 emiten yang dianalisis, terdapat tiga saham dengan probabilitas kenaikan harga di atas 50%, yaitu BREN (87,71%), BUMI (67,11%), dan EMTK (52,08%). Model ini dapat membantu investor dalam mengoptimalkan portofolio investasi jangka pendek dengan mempertimbangkan toleransi risiko masing-masing investor.
Pre-Service Teachers Problems and Strategies During the Kampus Mengajar (KM) Program Kinanti, Tri; Triyoga, Arilia
Ahmad Dahlan Journal of English Studies Vol. 11 No. 2 (2024): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/adjes.v11i2.1430

Abstract

The Kampus Mengajar (KM) Program offers valuable real-world experience despite the challenges that prevent prospective teachers from carrying out their duties. This research aims to find out how prospective English teachers deal with the problems they face when participating in the Kampus KM program. This study is a qualitative study using narrative inquiry method. The subjects of this study were two students majoring in English Educationat a private university in Yogyakarta who had completed four months of KM teaching practice. The instrument used was an interviewguideline. To collect data, the researcher used semi-structured interviews with open-ended questions. The questions in the semi- structuredinterview included the general experiences of participants during the KM program. The researcher used three steps to analyze the data: data reduction, data presentation, drawing conclusions and verification. The results of the study showed that pre-service teachers encountered obstacles during the KM teaching practice period such as lack of teaching media, self-doubt, and lack of student motivation in learning English. This was influenced by several factors such as lack of school facilities, lack of teacher experience in teaching, and differences in motivation and understanding of English between students. Pre-service teachers were required to find strategies to solve problems faced during the teaching practice period; use of games, flash card media, and understanding the material. This affected the self-development of prospective teachers in terms of problem solving and self-confidence.
Prediksi Rata-Rata Harga Emas 24 Karat Di Kota Medan Dengan Metode Arima Marlina, Wenni; Dongoran, Raisha zuhiara; Kinanti, Tri; Ginting, Iren Salsalina Br; Widyasari, Rina
JURNAL JENDELA MATEMATIKA Vol. 3 No. 02 (2025): Jurnal Jendela Matematika: Edisi Juli 2025
Publisher : CV. Jendela Edukasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57008/jjm.v3i02.1634

Abstract

Fluktuasi harga emas yang dipengaruhi oleh berbagai faktor ekonomi global dan domestik mendorong pentingnya prediksi harga yang akurat sebagai dasar pengambilan keputusan investasi. Penelitian ini bertujuan untuk memodelkan dan memprediksi harga emas 24 karat di Kota Medan dengan menggunakan metode Autoregressive Integrated Moving Average (ARIMA). Data yang digunakan merupakan data sekunder bulanan dari Januari 2020 hingga Desember 2023 yang diperoleh dari BPS Kota Medan. Melalui tahapan identifikasi stasioneritas, estimasi parameter, dan uji diagnostik model, ditemukan bahwa model terbaik adalah ARIMA (1,2,1). Model ini menunjukkan nilai Mean Absolute Percentage Error (MAPE) sebesar 9,13%, yang mengindikasikan tingkat akurasi prediksi yang sangat baik. Hasil prediksi menunjukkan tren kenaikan harga emas sepanjang tahun 2024, dengan nilai tertinggi mencapai Rp1.109.817 pada bulan Desember. Temuan ini diharapkan dapat memberikan informasi strategis bagi masyarakat dan investor dalam merencanakan investasi emas yang lebih bijak.
Optimasi Vehicle Routing Problem (VRP) Terhadap Rute Pengangkutan Sampah Di Kota Medan Dengan Algoritma Ant Colony Optimization Kinanti, Tri; Rima Aprilia
Mandalika Mathematics and Educations Journal Vol 7 No 3 (2025): Edisi September
Publisher : FKIP Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jm.v7i3.9787

Abstract

The growing population in Medan City has resulted in a significant increase in waste volume, creating the need for an efficient transportation system from Temporary Disposal Sites (TPS) to the Final Disposal Site (TPA). This study aims to apply the Ant Colony Optimization (ACO) algorithm to improve the efficiency of waste collection routes in the Medan Marelan District. ACO is a metaheuristic algorithm inspired by the foraging behavior of ants, where pheromone trails guide route selection. In this research, TPS and TPA locations were divided into six zones. Each zone was analyzed to determine the most efficient route based on the shortest travel distance. The research methodology consists of two main phases: route construction and pheromone updating. Data analysis was conducted manually for the first zone and through computational simulations using Python for the remaining five zones. The results show that ACO effectively produced optimal waste transportation routes in all areas. The shortest routes obtained were: Zone 1 at 17.05 km, Zone 2 at 25.25 km, Zone 3 at 16.995 km, Zone 4 at 8 km, Zone 5 at 14.83 km, and Zone 6 at 11.5 km. These findings confirm that the ACO algorithm is effective in addressing the Vehicle Routing Problem (VRP) in the context of waste transportation and offers a promising approach for enhancing urban waste management systems.