Tri Zafira, Zahra
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALISIS FAKTOR RISIKO PEMICU SERANGAN JANTUNG DI INDONESIA, MENGGUNAKAN METODE KLASIFIKASI (DECISION TREE, NAIVE BAYES, DAN RANDOM FOREST) Andini Bahri, Cheisya; Tri Zafira, Zahra; Ayuningtiyas, Pratiwi; Al-Farisy, M Hadi; Alfarizi, M.; Ditha Tania, Ken; Meiriza, Allsela
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 4 (2025): JATI Vol. 9 No. 4
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i4.13945

Abstract

Serangan jantung merupakan penyakit yang menyebabkan tingginya angka kematian di Indonesia, di mana penyakit tersebut dipengaruhi oleh beberapa faktor dan risiko, yaitu konsumsi alkohol, kebiasaan merokok, tingkat depresi, dan juga hipertensi. Dilakukannya penelitian ini dengan tujuan untuk melakukan kegiatan analisis pengaruh dari faktor-faktor tersebut dengan penyakit serangan jantung, penelitian ini menggunakan metode klasifikasi (Decision Tree, Naïve Bayes, dan Random Forest, berdasarkan data yang terdapat pada aplikasi Kaggle dengan judul Heart Attack Indonesia. Analisis pada penelitian ini dilakukan dengan bantuan tools (RapidMiner) untuk membandingkan performa dari ketiga metode klasifikasi dengan perbandingan rasio 70/30, 80/20, dan 90/10. Sehingga mendapatkan hasil analisis tertinggi yaitu metode Decision Tree dan Naïve Bayes memiliki akurasi yang sama, yaitu 74.97%, sedangkan metode Random Forest memiliki akurasi yang lebih rendah, yaitu 67.14%. Berdasarkan evaluasi menggunakan kurva ROCs, Decision Tree terbukti lebih efektif dalam mengklasifikasikan faktor risiko dibandingkan metode lainnya.
ANALISIS PENGARUH PENGGUNAAN METODE PEMBAYARAN PAYLATER TERHADAP POLA KONSUMTIF GENERASI MUDA: STUDI KASUS : MAHASISWA UNIVERSITAS SRIWIJAYA Fathoni, Fathoni; Ibrahim, Ali; Fatihaturrahmah, Aisyah; Cahya Aulia, Syifa; Ayuningtiyas, Pratiwi; Tri Zafira, Zahra
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 4 (2025): JATI Vol. 9 No. 4
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i4.14153

Abstract

Sentiment-Based Knowledge Discovery of Wondr by BNI App Reviews Using SVM, KNN, and Naive Bayes for CRM Enhancement Tri Zafira, Zahra; Ditha Tania, Ken; Kurnia Sari, Winda
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10323

Abstract

The rapid development of digital banking services has necessitated a deeper understanding of user perceptions and satisfaction levels. This study analyzes sentiment from user reviews of the Wondr by BNI app using a Knowledge Discovery approach and machine learning methods. Three classification algorithms were compared: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes, evaluated with accuracy, precision, recall, and f1-score. The results show that SVM and Naive Bayes achieved the best performance with F1-scores of 0.88 and 0.87, while KNN lagged behind with 0.77. An ANOVA test further confirmed that the performance differences were statistically significant (p < 0.05), with SVM and Naive Bayes consistently outperforming KNN. Word Cloud analysis revealed dominant positive terms such as "easy," "fast," and "transaction," alongside negative terms like "login," "difficult," and "verification." These findings highlight user appreciation for simplicity and speed, while pointing out functional issues that require attention. This research not only enriches the literature on Indonesian-language sentiment analysis in the financial sector but also provides practical insights for Customer Relationship Management (CRM), particularly in strengthening customer retention strategies and guiding UX redesign for digital banking services.