Claim Missing Document
Check
Articles

Found 3 Documents
Search

SISTEM ABSENSI MAHASISWA MENGGUNAKAN METODE HAAR FEATURE CASCADA CLASSFIER BERBASIS DETEKSI WAJAH DI UNIVERSITAS UBUDIYAH INDONESIA TB, Desita Ria Yusian; Kamal, Muhammad; Payana, Mahendar Dwi; Aulia, Niza
JOURNAL OF INFORMATICS AND COMPUTER SCIENCE Vol 9, No 2 (2023): Oktober 2023
Publisher : Ubudiyah Indonesia University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33143/jics.v9i2.3266

Abstract

Abstrak: Universitas Ubudiyah Indonesia sebagai salah satu Perguruan Tinggi di kota banda Aceh. pada saat ini universitas ubudiyah indonesia terus berupaya melakukannperbaikan manajemen sistem pendidikan dengan cara memadukan dengan perkebangan teknologi pada era revolusi industry 4.0 saat ini. Perbaikan dan peningkatan kualitas pendidikan dilakukan pada sistem absensi kehadiran mahasiswa yang sekarang masih dilakukan secara manual yaitu mahasiswa mengabsensi pada daftar kehadiran saat perkuliahan atau setelah perkuliahan berlangsung. Absensi yang dilakukan saat sekarang masih mendapat beberapa kendala seperti terjadi kesalahan dan kecurangan yang dilakukan sebagian mahasiswa, dimana mahasiswa yang tidak hadir dibantu oleh mahasiswa lain untuk memberikan izin pada absensi tanpa adanya informasi lebih lanjut serta proses absensi kehadiran mahasiswa yang kurang konsisten seperti absensi dilakukan sebelum diawal pertemuan, pada saat penjelasan materi selesai, diakhir pertemuan dan juga sering absen kehadiran setiap pertemuan di absensi dipertemuan selanjutnya. Guna membantu penyelesaian masalah absensi kehadiran mahasiswa diperlukan solusi yang tepat dengan cara menerapkan metode haar feature cascada classfier dan melalui haar feature cascada classfier dapat membantu mendeteksi objek wajah dengan variasi posisi dari hasil capture pada aplikasi sistem absensi deteksi wajah yang dapat digunakan oleh mahasiswa menggunakan smart phone secara online. Proses kerja aplikasi absensi deteksi wajah digunakan mahasiswa setelah didaftarkan lansung oleh admin dengan rekam wajah serta input data mahasiswa akan diverifikasi oleh admin. Selanjutnya admin berbagi akun user untuk mahasiswa supaya dapat masuk sebagai user melalui smart phone secara online dengan tujuan supaya mahasiswa dapat melakukan proses absensi kehadiran sebelum perkuliahan berlangsung. Sistem yang dibangun menampilkan hasil yang efektif berupa pengenalan wajah untuk proses absensi online berdasarkan pada variasi posisi wajah yang di uji coba pada sampel random.Kata Kunci: Deteksi Wajah, Absensi kehadiran, Mahasiswa dan Haar Feature Cascada ClassfierAbstract:  Universitas Ubudiyah Indonesia, as one of the Higher Education Institutions in the city of Banda Aceh, is currently making continuous efforts to improve its education management system by integrating it with the advancements in technology during the current era of Industry 4.0 revolution. The focus of this improvement is on the student attendance system, which is currently managed manually, where students mark their attendance either during or after lectures. The existing attendance system faces several challenges, including errors and fraudulent activities by some students. Some students who are absent are assisted by their peers in marking attendance without further verification. Additionally, the attendance process is inconsistent, as students sometimes mark their attendance at the beginning, after the lecture, or at the end of the session. Some even frequently miss multiple sessions and are marked present in subsequent sessions without attending. To address these attendance-related challenges, a solution is being implemented by applying the Haar Feature Cascade Classifier method. This method aids in facial recognition with variations in facial positions, captured through a face detection application that can be used by students via their smartphones. The operation of the facial recognition attendance application is initiated after students are registered by administrators, where their facial features are recorded and their data is verified. Subsequently, administrators provide user accounts to students, allowing them to access the system through their smartphones, enabling students to mark their attendance before each lecture. The system is designed to effectively recognize faces for online attendance based on variations in facial positions, which have been tested using random samples. This system aims to streamline and enhance the attendance process, promoting accuracy and efficiency while mitigating the issues associated with manual attendance management.Keywords: Face Detection, Student Attendance, and Haar Feature Cascade Classifier
Comparative Study of BiLSTM and GRU for Sentiment Analysis on Indonesian E-Commerce Product Reviews Using Deep Sequential Modeling Nasution, Khairunnisa; Saddami, Khairun; Roslidar, Roslidar; Akhyar, Akhyar; Fathurrahman, Fathurrahman; Aulia, Niza
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4878

Abstract

Sentiment analysis plays a crucial role in understanding customer perspectives, especially within Indonesian e-commerce platforms. Despite the success of deep learning in high-resource languages, its application to Indonesian sentiment data remains underexplored. Previous studies using models like BERT-CNN or fine-tuned IndoBERT achieved modest results, highlighting the need for more effective architectures for Indonesian language. This study aims to investigate the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Unit (GRU) models in classifying buyers’ sentiment from Indonesian product reviews on the PREDECT-ID dataset comprising 5,400 annotated product reviews. Standard NLP preprocessing techniques—including text normalization, tokenization, stopword removal, and stemming—were applied. Both models were trained using Adam and Stochastic Gradient Descent (SGD) optimizers, and their performance was evaluated using accuracy, precision, recall, and F1-score metrics. The GRU model trained with SGD achieved the highest performance, with an accuracy of 94.07%, precision of 93.84%, recall of 94.53%, and F1-score of 94.18%. Notably, the BiLSTM model combined with SGD resulted in competitive results, achieving 93.61% accuracy and 93.84% F1-score. The results confirm that GRU with SGD optimizer, are highly effective for sentiment classification in Indonesian language datasets. By leveraging deep sequential modeling for a low-resource language, this study contributes to the advancement of scalable sentiment analysis systems in underrepresented linguistic domains. The results contribute to the advancement of NLP systems for Indonesian by providing a benchmark for the future development of sentiment analysis tools in low-resource languages.
Penerapan Sistem Pengelolaan Air Sisa Wudhu Otomatis Berbasis IoT di Mushalla Darul Faizin, Desa Kopelma Darussalam Amanda, Silviani; Yufnanda, Muhammad Aditya; Rizky, Muharratul Mina; Ramadhana, Rizka; Aulia, Niza; Dawood, Rahmad; Leo, Hendrik
Jurnal Pengabdian Rekayasa dan Wirausaha Vol 2, No 2 (2025)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kegiatan pengabdian kepada masyarakat ini dilaksanakan di Mushalla Darul Faizin, Banda Aceh, yang menghadapi permasalahan tingginya konsumsi air bersih akibat belum adanya sistem pengelolaan air wudhu yang efisien. Air sisa wudhu yang masih tergolong layak digunakan kembali selama ini langsung dibuang ke saluran pembuangan tanpa pemanfaatan lebih lanjut. Melalui kegiatan ini, tim pengabdian mengembangkan dan menerapkan sistem daur ulang air wudhu otomatis berbasis Internet of Things (IoT) yang berfungsi untuk mendeteksi, mengumpulkan, menyaring, serta mendistribusikan kembali air sisa wudhu untuk keperluan non-konsumsi seperti pembersihan lantai dan penyiraman tanaman. Sistem ini menggunakan mikrokontroler ESP32, sensor ultrasonik untuk pemantauan level air secara real-time, serta integrasi platform Telegram bot untuk memudahkan pengurus mushalla dalam melakukan monitoring dan kontrol jarak jauh. Hasil implementasi menunjukkan bahwa sistem beroperasi stabil dengan reliabilitas mencapai 98,2% dan mampu menghemat penggunaan air bersih hingga sekitar 30%. Selain menghasilkan solusi teknologis yang efisien, kegiatan ini juga meningkatkan kesadaran dan kapasitas pengurus mushalla dalam pengelolaan sumber daya air secara mandiri dan berkelanjutan.