Claim Missing Document
Check
Articles

Found 1 Documents
Search

The Analysis of Epidemic Dynamical Models for Dengue Transmission Considering the Mosquito Aquatic Phase Inayah, Nur; Manaqib, Muhammad; Fitriyati, Nina; Wijaya, Madona Yunita; Fiade, Andrew; Sari, Flori Ratna
Jambura Journal of Biomathematics (JJBM) Volume 6, Issue 3: September 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v6i3.29332

Abstract

This  study  generalizes the dengue  transmission model  by  considering the dynamics of the human population and  the Aedes  aegypti mosquito  population.  The  mosquito  population is  devided into  two  phases,  i.e.,  the aquatic  phase and the adult  phase.  From  the model,  we seek the disease-free  equilibrium, endemic  equilibrium, and  basic  reproduction number   (R0) points.    The  model  yields a  single   basic  reproduction number   which determines the system’s  behavior.   If  R0    1,  the disease-free  equilibrium is  locally  asymptotically stable, indicating that the disease  will die out.  Conversely, if R0    1, an endemic  equilibrium exists,  and  the disease may  persist  in the  population.    Next,   a  numerical simulation  is  performed  to  geometrically  visualize   the resulting analysis  and  also  to  simulate the  dengue   transmission in  DKI Jakarta   Province,  Indonesia.   The resulting  numerical simulation  supports our  analysis.   Meanwhile, the  simulation in  DKI Jakarta  Province suggests that  the dengue  fever  disappears after  60 days  from  the first  case appearance  after  controlling  the mosquito  population through fogging and the use of mosquito  larvae  repellent.  Lastly, the sensitivity analysis of R0   indicates  that  parameters   related  to  the  mosquito’s  aquatic   phase  have  a  strong   influence   on  dengue transmission, meaning that small  changes  in these parameters  can significantly increase or decrease the value  of R0  and thus the potential  for an outbreak.