Claim Missing Document
Check
Articles

Found 34 Documents
Search

MULTI-OBJECTIVE VEHICLE ROUTING PROBLEM WITH TIMES WINDOWS DENGAN PENDEKATAN GOAL PROGRAMMING UNTUK MENYELESAIKAN MASALAH OPTIMISASI RUTE PERJALANAN BUS PARIWISATA Manaqib, Muhammad; Pantoro, Renova Dedi
Sainstek : Jurnal Sains dan Teknologi Vol 9, No 1 (2017)
Publisher : IAIN Batusangkar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (277.521 KB) | DOI: 10.31958/js.v9i1.529

Abstract

Determining the route of the tourism bus to visit some tourism object not only to minimaze the distance, but also there are another purpose, such as minimization cost, maximizing tourism object, minimizing trip time, and maximizing the visit time in the tourism object. But, determining the route we should notice the open hours of the tourism object and operational hours for the tourism bus. The matter of determining the rute that involve some purpuse and considering the visit hours in the math is known as multi-objective vehicle routing problem with times windows. Goal programming is one of technique to solve the model with the multi-objective function and assist to find an optimal solution form several an compatible purpose. The purpose of goal programming is to minimize the total of deviation of all the purpose. Based on the case, goal programming will be apply the multi-objective vehicle routing problem with times windows which has been finised with goal programming approachment. Then, from the model it applied for the trip route of tourism agen Purpledia Pictures T&T in Bali island. The completion with LINGO, give an optimal route solution of the tourism bus, as many as three route with total cost IDR 1.269.700,00, as 25 tourism object which has been visited from 49 tourism place, the tour time 14.1 hours in 3 days and the total time to visited of tourism object 27 hours in 3 days.
OPTIMISASI RUTE PERJALANAN BUS PARIWISATA MENGGUNAKAN MULTI-OBJECTIVE VEHICLE ROUTING PROBLEM WITH TIMES WINDOWS DENGAN PENDEKATAN GOAL PROGRAMMING Muhammad Manaqib; Renova Dedi Pantoro
LOGIK@ Vol 8, No 1 (2018): VOL.8 NO.1 TAHUN 2018
Publisher : Universitas Islam Negeri Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7681.021 KB)

Abstract

Penentuan rute perjalanan bus pariwisata untuk mengunjungi beberapa objek wisata di suatu wilayah pada kenyataannya tidak hanya sebatas meminimumkan jarak, melainkan terdapat beberapa tujuan yang lain, seperti meminimumkan biaya, memaksimalkan tempat wisata yang dikunjungi, meminimumkan perjalanan, dan memaksimalkan waktu kunjungan di tempat wisata. Akan tetapi penentuan rute tersebut juga harus memperhatikan jam buka tempat wisata dan jam operasional bus pariwisata. Masalah penentuan rute yang melibatkan beberapa tujuan dan mempertimbangkan waktu kunjungan dalam matematika dikenal sebagai vehicle routing problem with times windows dengan tujuan ganda Goal programming merupakan salah satu teknik penyelesaian model dengan fungsi tujuan ganda (multi objective) dan membantu menemukan solusi optimal dari beberapa tujuan yang saling bertentangan. Tujuan goal programming adalah meminimumkan total simpangan semua tujuan. Berdasarkan hal tersebut, goal programming akan diterapkan untuk menyelesaikan vehicle routing problem with times windows dengan tujuan ganda untuk optimisasi rute perjalanan bus pariwisata. Berdasarkan penelitian yang telah dilakukan, diperoleh model matematika vehicle
BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA Muhammad Manaqib
LOGIK@ Vol 7, No 2 (2017): Vol.7 No.2 Tahun 2017
Publisher : Universitas Islam Negeri Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (561.051 KB)

Abstract

Masalah syarat batas (MSB) Persamaan Laplace banyak digunakan untuk memformulasikan berbagai macam masalah, seperti thermostatics, elastostatics, electrostatics, magnetostatics, mekanika fluida, dan aliran air pada media perporous. Penyelesaian analitik MSB Persamaan Laplace relative sulit dilakukan, terlebih jika domain tidak beraturan dan melibatkan syarat batas campuran. Alternatif yang dapat dilakukan adalah dengan menggunakan pendekatan metode numerik. Boundary Element Method atau Metode Elemen Batas (MEB) adalah metode numerik yang digunakan untuk menyelesaikan persamaan diferensial parsial yang ditemui pada fisika matematis dan teknik. Peneltian ini akan membahas bagaimana menyelesaikan MSB Persamaan Laplace menggunakan MEB dan melakukan simulasi numerik. Hasilnya diperoleh lima tahapan untuk menyelesaikan MSB Persamaan Laplace. Hasil numerik yang diperoleh dengan menggunakan MEB mengindikasikan bahwa MEB dapat menghasilkan solusi numerik yang cukup akurat. Semakin banyak segmen garis yang digunakan untuk mengevaluasi MEB maka semakin kecil errornya.
PENYELESAIAN MASALAH SYARAT BATAS PERSAMAAN HELMHOTZ MENGGUNAKAN DUAL RECIPROCITY BOUNDARY ELEMENT METHOD Muhammad Manaqib
LOGIK@ Vol 8, No 2 (2018): Vol.8 No.2 Tahun 2018
Publisher : Universitas Islam Negeri Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (634.65 KB)

Abstract

Persamaan Helmhotz merupakan persamaan diferensial parsial tipe eliptik yang melibatkan variabel ruang dan mempertimbangkan masalah syarat batas. Kondisi batas mengikuti hukum-hukum fisika tertentu yang dirumuskan pada batasbatas domain dimana solusi diperlukan. Penyelesaian analitik masalah syarat batas (MSB) persamaan Helmhotz relative sulit dilakukan karena solusi fundamentalnya sulit dicari dan tidak tunggal. Alternatif yang dapat dilakukan adalah dengan menggunakan pendekatan metode numeric Dual Reciprocity Boundary Elemen Method(DRBEM). DRBEM adalah pengembangan dari Boundary Elemen Method (BEM)untuk menyelesaikan PDP yang sulit dicari solusi fundamentalnya. Peneltian ini akan membahas bagaimana menyelesaikan MSB Persamaan Helmhotzmenggunakan DRBEM dan melakukan simulasi numerik. Hasilnya diperoleh enam tahapan untuk menyelesaikan MSB Persamaan Helmhotz. Hasil numerik yang diperoleh dengan menggunakan DRBEM mengindikasikan bahwa DRBEM dapat menghasilkan solusi numerik yang cukup akurat.
Pemodelan Matematika Infiltrasi Air pada Saluran Irigasi Alur Muhammad Manaqib
Jurnal Matematika MANTIK Vol. 3 No. 1 (2017): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.432 KB) | DOI: 10.15642/mantik.2017.3.1.23-29

Abstract

Water is one of the main necessity of agricultural activities, because without enough water agricultural crops will not be produced optimally. The way to insufficient water in agricultural crops is irrigation. One of the irrigation methods which is used on agriculture in the world is furrow irrigation method. Water gets into the soil from the bottom of the furrow and furrow’s wall towards the root zone of the plants. The complexity of the water infiltration process in the ground makes infiltration analysis by laboratory experiment difficult to do and needs substantial cost. The alternative way which can do is with mathematical modeling. This paper discusses about mathematical modeling of water infiltration in furrow irrigation channel trapezoidal in shape. This mathematical modeling is shaped boundary condition problem with a cross section of a closed and limited line of irrigation. Governing equation obtanined from Richard equation which then transformed using Kirchoff transformation and non dimensional variable into the modified Helmholtz equation. While, the boundary condition is shaped mixture Neuman and Robin boundary condition.
Analysis Infiltration Waters in Various Forms of Irrigation Channels by Using Dual Reciprocity Boundary Element Method Ana Nurhasanah; Muhammad Manaqib; Irma Fauziah
Jurnal Matematika MANTIK Vol. 6 No. 1 (2020): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (930.303 KB) | DOI: 10.15642/mantik.2020.6.1.52-65

Abstract

This research discusses the infiltration of furrow irrigation invarious forms of irrigation channels in homogeneous soils. The governing equation of the problems is a Richard’s Equation. This equation is transformed using a set of transformation including Kirchhoff and dimensionless variables into Helmholtz modified equations. Furthermore with Dual Reciprocity Boundary Element Method (DRBEM), numerical solution of modified Helmholtz equation obtained. The proposed method is tested on problem involved infiltration from periodic flat channels, non-flat channels without impermeable and non-flat channels with impermeable. The greatest value of suction potential and water content is located below the channel surface. The most water consecutively is a non-flat channel without impermeable, non-flat channel with impermeable and flat channel on Lakish Clay soils.
Implementation of the Model Capacited Vehicle Routing Problem with Time Windows with a Goal Programming Approach in Determining the Best Route for Goods Distribution Wahri Irawan; Muhammad Manaqib; Nina Fitriyati
Jurnal Matematika, Statistika dan Komputasi Vol. 17 No. 2 (2021): JANUARY 2021
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/jmsk.v17i2.11107

Abstract

This research discusses determination of the best route for the goods distribution from one depot to customers in various locations using the Capacitated Vehicle Routing Problem with Time of Windows (CVRPTW) model with a goal programming approach. The goal function of this model are minimize costs, minimize distribution time, maximize vehicle capacity and maximize the number of customers served. We use case study in CV. Oke Jaya companies which has 25 customers and one freight vehicle with 2000 kg capacities to serve the customers in the Serang, Pandeglang, Rangkasbitung and Cikande. For simulation we use software LINGO. Based on this CVRPTW model with a goal programming approach, there are four routes to distribute goods on the CV. Oke Jaya, which considers the customer’s operating hours, with total cost is Rp 233.000,00, the total distribution time is 17 hours 57 minutes and the total capacity of goods distributed is 6150 kg.
Mathematical Model for MERS-COV Disease Transmission with Medical Mask Usage and Vaccination Muhammad Manaqib; Irma Fauziah; Mujiyanti Mujiyanti
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 1, No 2 (2019)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2571.135 KB) | DOI: 10.15408/inprime.v1i2.13553

Abstract

AbstractThis study developed a model of the spread of MERS-CoV disease using the SEIR model which was added by a health mask and vaccination factor as a preventive measure. The population is divided into six subpopulations namely susceptible subpopulations not using health masks and using health masks, exposed subpopulations, infected subpopulations not using health masks and using health masks, and recovering subpopulations. The results are obtained two equilibrium points, namely disease-free equilibrium points and endemic equilibrium points. Analysis of the stability of the disease-free equilibrium point using linearization around the equilibrium point. As a result, the asymptotic stable disease-free local equilibrium point if the base reproduction number is less than one. Numerical simulation models for MERS-CoV disease are carried out in line with the analysis of model behavior.Keywords: MERS-CoV, SEIR Model, Stability Equilibrium Point, Basic Reproduction Number. AbstrakPenelitian ini mengembangkan model penyebaran penyakit MERS-CoV menggunakan model SEIR yang ditambahkan faktor masker kesehatan dan vaksinasi sebagai upaya pencegahan. Populasi dibagi menjadi enam subpopulasi yaitu subpopulasi rentan tidak menggunakan masker kesehatan dan menggunakan masker kesehatan, subpopulasi laten, subpopulasi terinfeksi tidak menggunakan masker kesehatan dan menggunakan masker kesehatan, serta subpopulasi sembuh. Hasilnya diperoleh dua titik ekuilibrium yaitu titik ekulibrium bebas penyakit dan endemik. Analisis kestabilan titik ekuilibrium bebas penyakit menggunakan linearisasi disekitar titik ekuilibrium. Hasilnya, titik ekuilibrium bebas penyakit stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari satu. Simulasi numerik model untuk penyakit MERS-CoV yang dilakukan sejalan dengan analisis perilaku model.Kata kunci: MERS-CoV, Model SEIR, Kestabilan Titik Ekuilibrium, Bilangan Reproduksi Dasar.
Model Matematika Penyakit Kolera Melalui Kontak Antar Individu, Sumber Air, dan Lalat Muhammad Manaqib; Fauziah Irma; Bagus Fajar Apriyanto
Vygotsky : Jurnal Pendidikan Matematika dan Matematika Vol 4, No 2 (2022): Vygotsky: Jurnal Pendidikan Matematika dan Matematika
Publisher : Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (457.02 KB) | DOI: 10.30736/voj.v4i2.539

Abstract

Penelitian ini mengembangkan model matematika penyebaran penyakit kolera menggunakan model SIWR yang ditambahkan dengan vektor lalat. Berdasarkan model matematika tersebut, dicari titik kestimbangan bebas penyakit, titik kestimbangan endemik, dan bilangan reproduksi dasar (R0). Hasil analisis kestabilan titik kestimbangan bebas penyakit diperoleh bersifat stabil asimtotik lokal saat R0<1. Simulasi model dilakukan dengan nilai-nilai parameter yang diambil dari beberapa jurnal dan mengambil kasus di Haiti. Hasilnya penyakit kolera di Haiti dalam waktu mendatang akan menghilang.Selanjutnya dilakukan analisis sensitivitas parameter-parameter model terhadap R0, hasilnya terdapat dua parameter yang dominan berpengaruh terhadap penyebaran penyakit kolera yakni  laju kontak infektif individu rentan dengan individu terinfeksi  dan  tingkat kesembuhan individu dari penyakit kolera.
Mathematics Model of COVID-19 with Two-Stage Vaccination, Symptomatic, Asymptomatic, and Quarantine Individuals Nur Inayah; Muhammad Manaqib; Muhammad Febry Fadillah
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i3.15188

Abstract

This research developed a model of COVID-19 based on the SEIR model which was further developed by dividing the infected subpopulation into symptomatic and asymptomatic, adding quarantine of infected individuals and vaccination in two steps. Making this model begins with making a compartment diagram of the disease and then forming a system of differential equations. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R0) are obtained. Analysis of the stability of the disease-free equilibrium point was locally asymptotically stable if R01 and an endemic equilibrium point existed if R01. Numerical simulation for the model that has been made is in line with the analysis. Furthermore, the sensitivity analysis obtained that the parameters that have a significant effect on the spread of COVID-19 are the rate of the first dose vaccination, the rate of contact with symptomatic or asymptomatic individuals, and the rate of quarantine of symptomatic infected individuals.