Claim Missing Document
Check
Articles

Found 3 Documents
Search

Rancangan Gim Visual Novel “GO VEGETARIAN” Untuk Edukasi Pola Hidup Sehat Anthonius; Simalango, Holong Marisi
Journal of Digital Ecosystem for Natural Sustainability Vol 4 No 1 (2024): Juli 2024
Publisher : Fakultas Komputer - Universitas Universal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63643/jodens.v4i1.195

Abstract

A vegetarian diet is a pattern that avoids meat consumption and increases the intake of plant-based foods, which has attracted public interest with claims of its health benefits. Starting a vegetarian diet correctly and ensuring adequate nutritional information is a challenge for beginners. Very few outreach media still suit young people's needs in visual form. This research aims to design and build an Android-based visual novel game as an easy-to-understand educational medium about the vegetarian lifestyle. Game development applies the Game Development Life Cycle (GDLC) section and beta testing using data collection techniques through questionnaires. The application was made using Unity Engine version 2020. The results of the research through the creation of a visual novel game showed that the results of a questionnaire were obtained where 66.7% of respondents answered that they were very motivated to become vegetarian and 57.6% responded that they were very interested in adopting a vegetarian lifestyle.
Implementasi Jobload Analysis Menggunakan Metode Full Time Equivalent (FTE) Untuk Menentukan Kebutuhan Tenaga Kerja (Study kasus Perusahaan pertambangan di kota Palembang) Deri Maryadi; Hermanto MZ; azhari; Adi Fitra; Anthonius
JURNAL TEKNIK DAN SISTEM INDUSTRI Vol 1 No 02 (2023): Edisi Juli - Desember
Publisher : PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS TRIDINANTI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52333/jietri.v1i02.428

Abstract

Optimalisasi dalam setiap Perusahaan meruapakan sesuatu yang harus dilakukan yang salah satunya adalah optimalisasi dalam kebutuhan operator dalam kegiatan operasioanl Perusahaan [1]. Penelitian ini bertujuan untuk mengatasi tantangan dalam penentuan kebutuhan operator dengan mengusulkan suatu pendekatan yang lebih terperinci menggunakan metode Full Time Equivalent (FTE) untuk mengukur job load. Meskipun FTE telah menjadi alat yang umum digunakan dalam mengukur kebutuhan tenaga kerja, penerapannya sering kali dihadapi oleh kompleksitas kontekstual yang sulit diintegrasikan dengan faktor-faktor variabel dalam dunia operasional dalam pertambangan. Dari hasil penelitian didapatkan hasil Beban kerja yang terdapat pada PT. Bukit Asam Tbk Unit Dermaga Kertapati satuan kerja umum. Beban kerja supervisor layanan umum 177 %, admin layanan umum 62 %, supervisor balitas 474 %, supervisor layanan mess & griya 183 %, admin layanan mess & griya 103%, supervisor gudang 179% dan admin gudang 248 %.
Implementasi Regresi Linear Untuk Memprediksi Hasil Impor Jumlah Barang Konsumsi Tahun 2021-2036 Anthonius; Luise, Charles Calvin King; Prisselix, Juven
Journal of Digital Ecosystem for Natural Sustainability Vol 1 No 2 (2021): Desember 2021
Publisher : Fakultas Komputer - Universitas Universal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63643/jodens.v1i2.38

Abstract

Import is a very important activity for a country and the value always changing every year, this thing can affect the foreign exchange of a country. When a country consumed a lot goods, it resulted in the country to do a lot of import activity as well. By doings so, the economy would be unbalanced and so the country will has a lot of debts. With that in mind, predicting the import activity in the future can be essential to prevent the country from being unbalanced in terms of economy. The purpose of this research is to predict the future import activity by using Linear Regression Algorithm and applying Cross-Industry Standard Process for Data Mining (CRISP-DM) method. This method uses to find the value of regression equation, as well as getting error analysis through accuracy of predictions using MAD, MSE, and MAPE using R. Studio software. The results that was obtained for 2021 amounted to 6745.298 tons and 2022 amounted to 6578.703 tons. As for the resulting error analysis, MAD value is 2652.901, MSE value is 10002316 and MAPE value is 255.17%.