Claim Missing Document
Check
Articles

Found 12 Documents
Search

Comparative Analysis of Naïve Bayes and K-Nearest Neighbor (KNN) Algorithms in Stroke Classification Iswara, Ida Bagus Ary Indra; Anandita, Ida Bagus Gede; Dahul, Maria
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4395

Abstract

Stroke, also known as cerebrovascular, is a type of Non-Communicable Disease (NCD). The symptoms of this disease arise due to a blockage (ischemic) or rupture (hemorrhagic) of a blood vessel that disrupts blood flow to the brain. This condition causes a lack of oxygen and nutrients to brain cells, resulting in damage and potentially death. This research aims to compare the use of Naive Bayes and K-Nearest Neighbor (K-NN) algorithms in classifying stroke diseases. The research process involves data collection, data validation, data preprocessing, data reading, data transformation, data splitting, model implementation, classification evaluation, application of Naive Bayes and K-Nearest Neighbor (K-NN) algorithms, and comparative analysis of results. The variables used in this study include: gender, age, hypertension, heart disease, ever married, work type, residence type, avg glucose level, bmi, smoking status, stroke. Sugar, BMI, Smoking Status, Stroke. Based on the experiments conducted, it was found that the Naive Bayes algorithm achieved an average accuracy rate of 91.67%, while the K-Nearest Neighbor (K-NN) algorithm achieved an average accuracy rate of 95.59%. Therefore, it can be concluded that the K-Nearest Neighbor (K-NN) algorithm has a higher average accuracy rate than the Naive Bayes algorithm, with a percentage difference in accuracy of 3.92%.
Pendampingan Instagram Marketing dalam Membangun Ketrampilan Pemasaran Digital dan Brand Awareness Produk UMKM Suandana, Ni Putu Widantari; Aditama, Putu Wirayudi; Sandhiyasa, I Made Subrata; Prabhawa , I Kadek Angga Surya; Atmaja, Ketut Jaya; Sarasvananda , Ida Bagus Gde; Anandita, Ida Bagus Gede
Jurnal KOMET Vol 1 No 1 (2024): Jurnal Komet: Kolaborasi Masyarakat Berbasis Teknologi : Volume 1 Nomor 1, Juni 2
Publisher : Yayasan Sinergi Widya Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70103/komet.v1i1.11

Abstract

UMKM di Desa Geluntung, Bali memiliki produk unggulan contohnya produk keripik, meskipun populer secara lokal, menghadapi tantangan dalam memanfaatkan Instagram untuk memperluas jangkauan pasar dan meningkatkan brand awareness. Keterbatasan pengetahuan digital, manajemen konten yang kurang efektif, pemanfaatan fitur Instagram yang tidak optimal, dan pengukuran performa yang lemah adalah beberapa tantangan utama yang dihadapi. Untuk mengatasi masalah ini, kegiatan pelatihan dan pendampingan dalam pemasaran digital melalui Instagram dilakukan. Metode pelaksanaan meliputi pengaturan profil bisnis, pembuatan konten yang menarik, pemanfaatan fitur-fitur Instagram seperti Stories dan Highlights, serta analisis data melalui Instagram Insights. Hasil kegiatan menunjukkan peningkatan pemahaman dan keterampilan digital, serta peningkatan engagement dan brand awareness produk UMKM.