Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMEN PERUNDUNGAN TERHADAP GURU DENGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES Zamzuri, Ahmad; Nasution, Nurliana; Susandri, Susandri; Bimby, Novia Putri
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 4 (2025): November 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i4.4916

Abstract

Abstract: This study discusses sentiment analysis of bullying experienced by teachers on social media. The research employs the Support vector machine (SVM) and Naïve Bayes methods to classify sentiments into positive, negative, or neutral categories. The data were collected from various social media platforms and analyzed using text mining techniques. The results show that the SVM method achieved a higher accuracy rate compared to Naïve Bayes in detecting negative sentiments related to bullying toward teachers. These findings contribute to a better understanding of digital bullying patterns targeting educators and provide a foundation for developing more effective policies to address bullying cases in the educational environment. Keyword: sentiment analysis, bullying, teachers, support vector machine, naïve bayes, text mining. Abstrak: Penelitian ini membahas analisis sentimen terhadap perundungan yang dialami oleh guru di media sosial. penelitian ini menggunakan metode support vector machine (svm) dan naïve bayes untuk mengklasifikasikan sentimen menjadi positif, negatif, atau netral. data yang digunakan berasal dari berbagai platform media sosial dan dianalisis menggunakan teknik text mining. hasil penelitian menunjukkan bahwa metode svm memiliki tingkat akurasi yang lebih tinggi dibandingkan dengan naïve bayes dalam mendeteksi sentimen negatif terkait perundungan terhadap guru. temuan ini dapat membantu dalam memahami pola perundungan digital terhadap tenaga pendidik serta memberikan dasar untuk kebijakan yang lebih efektif dalam menangani kasus perundungan di dunia pendidikan. Kata kunci: analisis sentimen, perundungan, guru, support vector machine, naïve bayes, text mining..