Tammam, Bimmo Fathin
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Taxpayer Classification Using K-Means Clustering to Support CRM Strategy Development: Case Study of Prabumulih City Samsat Tammam, Bimmo Fathin; Ibrahim, Ali; Indah, Dwi Rosa; Oklilas, Ahmad Fali; Utama, Yadi
Journal of Information System and Informatics Vol 7 No 4 (2025): December
Publisher : Asosiasi Doktor Sistem Informasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63158/journalisi.v7i4.1365

Abstract

Effective management of taxpayer data is crucial for enhancing compliance and optimizing regional revenue. This study addresses the limited use of data-driven taxpayer segmentation in local Samsat institutions by applying K-Means Clustering to support targeted Customer Relationship Management (CRM) strategies. A dataset of 3,999 motor vehicle taxpayer records from September 2025 was processed through feature selection, scaling, and clustering. The analysis identified three distinct taxpayer groups based on payment timeliness, compliance consistency, and vehicle age. Cluster validity was confirmed using the Davies-Bouldin Index, yielding a value of -41.327 for k = 3, supported by ANOVA for statistical significance. The findings highlight how clustering can reveal taxpayer behavior patterns, guiding personalized services and compliance programs. This study's novelty lies in integrating clustering outcomes with practical CRM strategies for public agencies, offering a data-driven approach to improve taxpayer engagement and regional revenue. However, the study is limited by its focus on a single-period dataset and vehicle-related attributes.
Analisis Sentimen Publik terhadap Kebijakan Perizinan Tambang untuk Ormas Keagamaan Menggunakan Algoritma SVM Alifayoezra, Muhammad Dzaky; Fathoni, Fathoni; Tammam, Bimmo Fathin; Putri, Septhia Charenda; Rizki, Raditya Dafa; Ibrahim, Ali
Jurnal Sains dan Informatika Vol. 11 No. 2 (2025): Jurnal Sains dan Informatika
Publisher : Teknik Informatika, Politeknik Negeri Tanah Laut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34128/jsi.v11i2.1785

Abstract

Penelitian ini menganalisis sentimen publik terhadap kebijakan pemberian Izin Usaha Pertambangan Khusus (IUPK) kepada organisasi masyarakat (ormas) keagamaan sebagaimana diatur dalam PP No. 25 Tahun 2024. Data diperoleh dari media sosial X (Twitter) dan diolah menggunakan algoritma Support Vector Machine (SVM) melalui tahapan crawling, preprocessing, translasi, pelabelan sentimen, dan ekstraksi fitur dengan metode N-gram. Dari 1245 data yang dianalisis, mayoritas memiliki sentimen netral (550 data), diikuti positif (475 data), dan negatif (219 data), dengan akurasi model mencapai 75,3%. Hasil ini menunjukkan bahwa publik cenderung berhati-hati dan menunggu kejelasan dari pemerintah terkait implementasi kebijakan tersebut. Penelitian ini merekomendasikan peningkatan komunikasi publik yang transparan dan penggunaan model berbasis deep learning untuk analisis lanjutan yang lebih akurat dan kontekstual.