Khalifah Insan Nur Rahmi
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

ENVIRONMENT QUALITY IDENTIFICATION USING LANDSAT-8 IN THE PERIOD OF COVID-19 LOCKDOWN IN JAKARTA Khalifah Insan Nur Rahmi; Mangapul Parlindungan Tambunan; Rudy P. Tambunan
International Journal of Remote Sensing and Earth Sciences Vol. 20 No. 2 (2023)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2023.v20.a3850

Abstract

The quality of the urban environment during the Covid-19 lockdown became a concern because it was reported that it had improved but the spatial studies were still limited. Spatial information at regional scale can be extracted from Landsat-8 imagery. This study aims to spatially and temporally analyze environmental quality variables from Landsat-8 Imagery and compare environmental quality indices before, during and after the Covid-19 lockdown in Jakarta. Environmental quality variables extracted from Landsat-8 imagery are PM10, LST, NDVI, NDWI, NDMI. Radiometric correction and masking were applied to obtain Landsat-8 reflectance and radian values. PM10 concentrations were estimated using linear regression between station data and visible-near infrared (VNIR) reflectance band values. The variable land surface temperature (LST) is obtained from the brightness temperature band 10 extraction. NDVI, NDWI, and NDMI are extracted from the transformation of the reflectance band index. The environmental quality index is extracted from a weighted linear combination method where each variable has a weighted value of 50% PM10, 31% LST, 11% NDVI, 5% NDWI, and 3% NDMI. The results of the distribution of the environmental quality index before, during and after the Covid-19 lockdown show changes. Before the lockdown, some areas in Jakarta had a poor environmental quality index, while during the lockdown, only a few areas were still of poor quality, including the reclamation island and the Cilincing industrial area, North Jakarta. After the lockdown, the environmental quality index decreased again i.e. good, medium and bad categories but the distribution was not as wide as before the lockdown.
HOTSPOT VALIDATION OF THE HIMAWARI-8 SATELLITE BASED ON MULTISOURCE DATA FOR CENTRAL KALIMANTAN Khalifah Insan Nur Rahmi; Sayidah Sulma; Indah Prasasti
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 2 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2019.v16.a3293

Abstract

The Advanced Himawari Imager (AHI) is the sensor aboard the remote-sensing satellite Himawari-8 which records the Earth’s weather and land conditions every 10 minutes from a geostationary orbit. The imagery produced known as Himawari-8 has 16 bands which cover visible, near infrared, middle infrared and thermal infrared wavelength potentials to monitor forestry phenomena. One of these is forest/land fires, which frequently occur in Indonesia in the dry season. Himawari-8 can detect hotspots in thermal bands 5 and band 7 using absolute fire pixel (AFP) and possible fire pixel (PFP) algorithms. However, validation has not yet been conducted to assess the accuracy of this information. This study aims to validate hotspots identified from Himawari images based on information from Landsat 8 images, field surveys and burnout data. The methodology used to validate hotspots comprises AFP and PFP extraction, determining firespots from Landsat 8, buffering at 2 km from firespots, field surveys, burnout data, and calculation of accuracy. AFP and PFP hotspot validation of firespots from Landsat-8 is found to have higher accuracy than the other options. In using Himawari-8 hotspots to detect land/forest fires in Central Kalimantan, the AFP algorithm with 2km radius has accuracy of 51.33% while the PFP algorithm has accuracy of 27.62%.
DETECTING DEFORMATION DUE TO THE 2018 MERAPI VOLCANO ERUPTION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) FROM SENTINEL-1 TOPS Suwarsono; Indah Prasasti; Jalu Tejo Nugroho; Jansen Sitorus; Rahmat Arief; Khalifah Insan Nur Rahmi; Djoko Triyono
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13838

Abstract

This paper describes the application of Sentinel-1 TOPS (Terrain Observation with Progressive Scans), the latest generation of SAR satellite imagery, to detect displacement of the Merapi volcano due to the May–June 2018 eruption. Deformation was detected by measuring the vertical displacement of the surface topography around the eruption centre. The Interferometric Synthetic Aperture Radar (InSAR) technique was used to measure the vertical displacement. Furthermore, several Landsat-8 Thermal Infra Red Sensor (TIRS) imageries were used to confirm that the displacement was generated by the volcanic eruption. The increasing temperature of the crater was the main parameter derived using the Landsat-8 TIRS, in order to determine the increase in volcanic activity. To understand this phenomenon, we used Landsat-8 TIRS acquisition dates before, during and after the eruption. The results show that the eruption in the May–June 2018 period led to a small negative vertical displacement. This vertical displacement occurred in the peak of volcano range from -0.260 to -0.063 m. The crater, centre of eruption and upper slope of the volcano experienced negative vertical displacement. The results of the analysis from Landsat-8 TIRS in the form of an increase in temperature during the 2018 eruption confirmed that the displacement detected by Sentinel-1 TOPS SAR was due to the impact of volcanic activity. Based on the results of this analysis, it can be seen that the integration of SAR and thermal optical data can be very useful in understanding whether deformation is certain to have been caused by volcanic activity.