Abdollah, Mohd Faizal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis Of Machine Learning Algorithms For Dengue Fever Prediction Based On Clinical And Laboratory Features Sriyanto, Sriyanto; Aziz, RZ Abdul; Rahayu, Dewi Agushinta; Zuriati, Zuriati; Abdollah, Mohd Faizal; Irianto, Irianto
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 6 (2025): JUTIF Volume 6, Number 6, Desember 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.6.5309

Abstract

Dengue fever (DF) remains a global health problem requiring accurate early detection to prevent severe complications. This study applies machine learning (ML) algorithms to clinical and laboratory data for improving diagnostic accuracy. Six classifiers were compared: Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), and Support Vector Machine (SVM). The dataset consists of 1,003 patient records with nine feature columns, of which 989 were used after preprocessing. Class distribution was imbalanced, with 67.6% positive and 32.4% negative cases. Model performance was evaluated using 10-fold cross-validation based on accuracy, precision, recall, F1-score, confusion matrix, and ROC curve analysis. The results indicate that DT achieved the highest performance with 99.4% accuracy, 99.4% precision, 99.7% recall, and 99.6% F1-score, slightly outperforming NN. KNN, LR, and SVM produced comparable results, while NB showed substantially lower accuracy (44.3%) and limited discriminatory power. ROC analysis confirmed these findings, with DT, NN, SVM, and LR achieving AUC values between 0.992 and 0.999, whereas NB performed poorly. These findings highlight the strong potential of ML algorithms, particularly DT, to support medical decision systems, strengthen informatics-based decision support applications, and enhance the accuracy and speed of dengue diagnosis in clinical practice.