Claim Missing Document
Check
Articles

Found 1 Documents
Search

Design of 2x1 Microstrip Antenna Array Single Band with Proximity Coupling for Enhanced CCTV Performance Setiabudi, Dodi; Agustina, Citra; Syaifullah, Muh. Arif; Sarwono, Catur Suko; Herdiyanto, Dedy Wahyu; Chaidir, Ali Rizal; Laagu, Muh Asnoer
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 11, No. 1, February 2026 (Article in Progress)
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v11i1.2303

Abstract

The increasing demand for reliable wireless communication in modern surveillance systems, particularly Closed-Circuit Television (CCTV), requires the development of antennas with high efficiency, wide bandwidth, and stable signal performance. To meet these requirements, this study presents the design and analysis of a 2×1 microstrip array antenna with rectangular patches that use proximity coupling, optimized for operation in the 2.4 GHz ISM band. The antenna was designed and simulated using CST Studio Suite to evaluate its electromagnetic characteristics, while measurements using a Vector Network Analyzer (VNA) were performed to validate the performance of the manufactured prototype. Simulation results show that the antenna achieves a reflection loss of −24.62 dB, a standing wave ratio (VSWR) of 1.12, and a frequency bandwidth of 159 MHz, indicating good impedance matching and wide operational capability. Meanwhile, measurement results showed a reflection loss of −12.59 dB, a VSWR of 1.15, and a frequency bandwidth of 86 MHz. Both simulation and measurement results showed directional radiation patterns, ensuring efficient energy radiation and better signal focus for monitoring coverage. The designed antenna also shows a measured gain of 9.25 dBi, exceeding the simulated gain of 6.99 dBi, confirming improved performance. The difference between simulation and measurement is mainly due to variations in substrate thickness, material tolerance, and environmental factors during testing. Overall, the proximal coupling approach has proven effective in improving coupling efficiency without adding design complexity. This antenna is well-suited for reliable and efficient data transmission in CCTV applications. Furthermore, the findings contribute significantly to advancements in antenna technology, particularly in the domains of wireless communication, IoT, and smart city-based surveillance systems.