Ketrampilan Menulis Huruf Hijaiyah memerlukan penguasaan gerakan motorik halus yang baik. Penguasaan motorik halus tidak hanya berdampak pada kemampuan kognitif anak dalam mengenal dan menghafal huruf, tetapi Juga berfungsi agar otot kecil seperti jari tangan saling berinteraksi. Permasalahan yang dialami mitra TPA yaitu, proses Pemantauan secara langsung ini memerlukan perhatian yang intensif, sehingga sulit bagi ustadz/ustadzah untuk secara efektif memantau seluruh anak–anak sekaligus. ini menyebabkan proses pembelajaran menjadi kurang optimal, karena perhatian ustadz/ustadzah cenderung terfokus pada beberapa santri saja, sehingga santri-santri lain tidak memperoleh pengawasan dan bimbingan yang cukup. Tim pengabdian membuat solusi menerapkan sistem dengan memanfaatkan algoritma Convolutional Neural Network (CNN). CNN terbukti efektif dalam menangkap pola dari citra tulisan hijaiyah serta mampu mendeteksi kemampuan motorik anak secara otomatis melalui analisis tulisan mereka dengan menggunakan pemrosesan citra huruf hijaiyah penilaian berdasarkan empat tingkat perkembangan motorik halus, yaitu Belum Berkembang (BB), Mulai Berkembang (MB), Berkembang Sesuai Harapan (BSH), dan Berkembang Sangat Baik (BSB). Metode pelaksanaan yaitu anak-anak diminta menulis huruf Hijaiyah menggunakan alat tulis pada kertas yang telah disediakan. Tulisan tangan dipindai atau difoto untuk menghasilkan data berupa gambar digital. Gambar-gambar tersebut diklasifikasikan berdasarkan kategori kemampuan motorik (BB, MB, BSH, BSB). Hasil Model CNN melalui testing validation accuracy mengalami peningkatan selama proses pelatihan kondisi akurasi yang awalnya rendah diangka 0,7 kemudian mengalami kenaikan mendekati 1,0 seiring penambahan epoch pada rentan 5 iterasi sampai 40 iterasi menggambarkan pelatihan dan akurasi tinggi dengan pola model mampu melakukan pembelajaran tanpa overfitting.
Copyrights © 2025