Penelitian ini bertujuan untuk menganalisis pengaruh variasi profil rangka, yaitu besi kotak, besi siku, dan besi U, terhadap respons mekanik rangka alat manual roll bending menggunakan simulasi numerik. Parameter yang dianalisis meliputi tegangan normal, displacement, serta tegangan geser arah Tx dan Ty. Hasil simulasi menunjukkan bahwa profil besi siku menghasilkan nilai tegangan normal, tegangan geser, dan displacement tertinggi, yang mengindikasikan kekakuan struktural paling rendah dan potensi deformasi terbesar. Profil besi kotak menunjukkan kinerja struktural paling stabil dengan nilai tegangan dan displacement yang relatif rendah, sedangkan profil besi U menghasilkan tegangan rendah namun berpotensi mengalami ketidakstabilan akibat penampang terbuka. Berdasarkan hasil tersebut, dapat disimpulkan bahwa profil besi kotak merupakan pilihan paling sesuai untuk rangka alat manual roll bending karena mampu memberikan kekakuan tinggi, distribusi tegangan yang lebih merata, serta deformasi minimum, sehingga mendukung kestabilan dan presisi proses pembengkokan. This study aims to analyze the effect of different frame profiles—square hollow section, angle section, and U-channel—on the mechanical response of a manual roll bending machine frame using numerical simulation. The evaluated parameters include normal stress, displacement, and shear stresses in the Tx and Ty directions. The simulation results indicate that the angle section exhibits the highest normal stress, shear stress, and displacement, reflecting the lowest structural stiffness and the greatest deformation risk. The square hollow section demonstrates the most stable structural performance, characterized by lower stress levels and minimal displacement. Meanwhile, the U-channel shows relatively low stress values but presents potential instability due to its open cross-sectional geometry. Based on these findings, it can be concluded that the square hollow section is the most suitable profile for the main frame of a manual roll bending machine, as it provides higher stiffness, more uniform stress distribution, and minimal deformation, thereby ensuring structural stability and bending precision.
Copyrights © 2026