cover
Contact Name
Aji Prasetya Wibawa
Contact Email
keds.journal@um.ac.id
Phone
+62818539333
Journal Mail Official
keds.journal@um.ac.id
Editorial Address
Universitas Negeri Malang Semarang St. No. 5, Malang, East Java, 65145, Indonesia
Location
Kota malang,
Jawa timur
INDONESIA
Knowledge Engineering and Data Science
ISSN : -     EISSN : 25974637     DOI : 10.17977/um018
KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base systems.
Articles 6 Documents
Search results for , issue "Vol 3, No 1 (2020)" : 6 Documents clear
Opinion Analysis for Emotional Classification on Emoji Tweets using the Naïve Bayes Algorithm Siti Sendari; Ilham Ari Elbaith Zaeni; Dian Candra Lestari; Hanny Prasetya Hariyadi
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p50-59

Abstract

Opinion Analysis is a research study needed to social media, since the content could become a trending topic and has a significant impact on social life. One of the social media that have a big contribution to cyberspace and information development is Twitter. In the Twitter application, users can insert images that represent emotions, facial expressions, or icons. Emoji is a graphic symbol in the form of an image to express a thing, with the Emoji, a text can be read and understood according to its meaning because the image represents it. Of the several things that have been mentioned then, the researchers conducted research on the classification of tweet content based on the use of Emojis. This study aims to determine the emotional uses of Twitter in one period. Every tweet on the Twitter timeline, which contains both text and Emojis, will be classified according to several categories. The algorithm used was Naïve Bayes. It calculated the probability of Emoji tweet to obtain the text classification with Emojis. The results of the classification of emotions are grouped with three categories, namely "angry," "joy," and "sad," it showed that the category "joy" had become the emotional trend of Twitter users where Emojis (x1f60a) dominate the most. Meanwhile, the accuracy of the algorithm used to reach 90% with a 70:30 holdout technique.
Human Intestinal Condition Identification based-on Blended Spatial and Morphological Feature using Artificial Neural Network Classifier Ummi Athiyah; Arif Wirawan Muhammad; Ahmad Azhari
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p19-27

Abstract

Colon cancer is a type of disease that attacks the intestinal walls cell of humans. Colorectal endoscopic screening technique is a common step carried out by the health expert/gynecologist to determine the condition of the human intestine. Manual interpretation requires quite a long time to reach a result. Along with the development of increasingly advanced digital computing techniques, then some of the weaknesses of the manually endoscopic image interpretation analysis model can be corrected by automating the detection process of the presence or absence of cancerous cells in the gut. Identification of human intestinal conditions using an artificial neural network method with the blended input feature produces a higher accuracy value compared to the artificial neural network with the non-blended input feature. The difference in classifier performance produced between the two is quite significant, that is equal to 0.065 (6.5%) for accuracy; 0.074 (7.4%) for recall; 0.05 (5.0%) for precision; and 0.063 (6.3%) for f-measure.
Parallelization of Partitioning Around Medoids (PAM) in K-Medoids Clustering on GPU Adhi Prahara; Dewi Pramudi Ismi; Ahmad Azhari
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p40-49

Abstract

K-medoids clustering is categorized as partitional clustering. K-medoids offers better result when dealing with outliers and arbitrary distance metric also in the situation when the mean or median does not exist within data. However, k-medoids suffers a high computational complexity. Partitioning Around Medoids (PAM) has been developed to improve k-medoids clustering, consists of build and swap steps and uses the entire dataset to find the best potential medoids. Thus, PAM produces better medoids than other algorithms. This research proposes the parallelization of PAM in k-medoids clustering on GPU to reduce computational time at the swap step of PAM. The parallelization scheme utilizes shared memory, reduction algorithm, and optimization of the thread block configuration to maximize the occupancy. Based on the experiment result, the proposed parallelized PAM k-medoids is faster than CPU and Matlab implementation and efficient for large dataset.
Flood Prediction using Artificial Neural Networks: Empirical Evidence from Mauritius as a Case Study A. Zaynah Dhunny; Reena Hansa Seebocus; Zaheer Allam; Mohammad Yasser Chuttur; Muhammed Eltahan; Harsh Mehta
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p1-10

Abstract

Artificial Neural Networks (ANN) has been well studied for flood prediction. However, there is not enough empirical evidence to generalize ANN applicability to small countries with microclimates prevailing in a small geographical space. In this paper, we focus on the climatic conditions of Mauritius for which we seek to investigate the accuracy of using ANN to predict flooding using locally collected data from 11 meteorological stations spread across the country. The ANN model for flood prediction presented in this work is trained using 20,000 climate data records, collected over a period of two years for Mauritius. Our input climate features are minimum temperature, maximum temperature, rainfall and humidity and our output decision is „flood‟ or „no flood‟. Using ANN, we achieved an accuracy of 98% for flood prediction and hence, we conclude that ANN is indeed a good predictor for flood occurrence even for regions with predominantly microclimatic conditions.
Earthquake Magnitude and Grid-Based Location Prediction using Backpropagation Neural Network Bagus Priambodo; Wayan Firdaus Mahmudy; Muh Arif Rahman
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p28-39

Abstract

Earthquakes, a type of inevitable natural disaster, is responsible for the highest average death toll per year compared to other types of a natural disaster. Even though it is inevitable, but it can be anticipated to minimize damage and casualties, such as predicting the earthquake‘s magnitude using a neural network. In this study, a backpropagation algorithm is used to train the multilayer neural network to weekly predict the average magnitude of earthquakes in grid-based locations in Indonesia. Based on the findings in this research, the neural network is able to predict the magnitude of earthquakes in grid-based locations across Indonesia with a minimum error rate of 0.094 in 34.475 seconds. This best result is achieved when the neural network is trained for 210 epochs, with 16 neurons used in the input and output layer, one hidden layer consisted of 5 neurons and a learning rate of 0.1. This result showed backpropagation has pretty good generalization capability in order to map the relations between variables when mathematical function is not explicitly available.
Query Rewriting with Thesaurus-Based for Handling Semantic Heterogeneity in Database Integration I Made Riyan Adi Nugroho; I Wayan Budi Sentana
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p11-18

Abstract

Nowadays, studies on handling semantic heterogeneity still become a challenge for researcher. Several methods have been used to solve these problems, one of which is query rewriting, implemented by rewriting a query into the latest one by using the selected schema. Semantic query rewriting needs a framework in order to identify the connection through the data schema sources. This line is used as a basis for scheme selection. Also, ontology is a model which often be used in these specific cases. The lack of ontology becomes a significant problem that usually seen. Therefore, this paper will describe an alternative framework in order to identify the link of semantic, which assisted by thesaurus.

Page 1 of 1 | Total Record : 6