cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Sains & Teknologi Modifikasi Cuaca
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 566 Documents
SIMULASI NUMERIK MEKANISME TURBULENSI DEKAT AWAN KONVEKTIF Ni Putu Tiana Verayanti; I Kadek Nova Arta Kusuma
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 22 No. 1 (2021): June 2021
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v22i1.4560

Abstract

Intisari Turbulensi yang dialami oleh pesawat komersial rute Jakarta-Medan telah dilaporkan mengalami Clear Air Turbulence (CAT) di atas Sumatera Utara pada tanggal 24 Oktober 2017. Namun berdasarkan data citra satelit Himawari dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Indonesia menyebutkan bahwa di sekitar lokasi turbulensi terdapat awan kumulonimbus. Penelitian ini memanfaatkan model WRF-ARW dengan resolusi spasial dan temporal tinggi untuk mengetahui secara detail proses yang terjadi pada awan konvektif penyebab Near Cloud Turbulence (NCT). Turbulensi tersebut disebabkan oleh bilangan Richardson rendah yang terbentuk di wilayah udara jernih (clear air) yang berjarak 300-700 m di atas puncak awan dan diperkuat dengan adanya Turbulensi Energi Kinetik (TKE) mencapai 4,4 m2 / s2 dan geser angin vertikal (VWS) oleh arus keluar awan konvektif.  Abstract Turbulence encountered by commercial aircraft Jakarta-Medan routes has been reported that experienced Clear Air Turbulence (CAT) over North Sumatra on October 24th, 2017. However, based on Himawari satellite imagery data produced by Agency for Meteorology, Climatology, and Geophysics (BMKG), Indonesia stated that there was a cumulonimbus cloud around the turbulence location. This study utilizes WRF-ARW models with a high spatial and temporal resolution to find out in detail the processes that occur in convective clouds causing Near Cloud Turbulence (NCT). The turbulence was caused by a low Richardson number formed in the clear-air area, which has a distance of 300 - 700 m above the cloud top and reinforced by the existence of Turbulence Kinetic Energy (TKE) reaching 4,4 m2/s2 and vertical wind shear (VWS) by deep convection’s outflow.
FABRICATION OF 2-5 µM HYGROSCOPIC SEEDING MATERIAL FOR RAIN ENHANCEMENT PURPOSES Dini Harsanti; Krisna Adhitya; Safrizal Safrizal
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 22 No. 1 (2021): June 2021
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v22i1.4599

Abstract

Abstract Hygroscopic cloud seeding, which uses giant cloud condensation nuclei (GCCN) particles with diameters between 2-5 µm, has been known to be 100 times more effective compared to those that use hygroscopic flares. Micronisation through jet milling has been recognized as the most common and ubiquitous method used to obtain particles with such a narrow size (2-5 µm) distribution. This research has successfully developed and identified 2-5 µm NaCl powders mixed with 10% cab-o-sil anticaking agent and 2 (two) times jet milling frequency as a potential GCCN (hygroscopic) seeding material. We use a combination of jet mill micronisation, rough milling with a Cross-Beather Mill, and analytical sieving to produce powders with those mentioned above (2-5 µm) size distribution. We varied the anticaking agent percentage in the mixture and the jet milling process frequency to identify which parameters would result in the 2-5 µm size distribution. We then confirmed the micronisation results particle size distribution with a particle size analyzer (PSA) and its morphology with a scanning electron microscope (SEM) machine. The materials with the 10% cab-o-sil agent mixture were confirmed to have the aforementioned size distribution from the characterization results. Intisari Penyemaian awan higroskopis menggunakan partikel giant cloud condensation nuclei (GCCN) dengan diameter 2-5 m telah diketahui 100 kali lebih efektif dibandingkan dengan yang menggunakan flare higroskopis. Mikronisasi melalui jet milling telah dikenal sebagai metode yang paling umum dan banyak digunakan untuk mendapatkan partikel dengan distribusi ukuran sempit (2-5 µm). Penelitian ini berhasil mengembangkan dan mengidentifikasi serbuk NaCl 2-5 µm yang dicampur dengan 10% anti gumpal berupa Cab-O-Sil dan frekuensi jet milling 2 (dua) kali sebagai bahan penyemaian GCCN (higroskopis) potensial. Pada penelitian ini telah digunakan kombinasi mikronisasi jet mill, penggilingan kasar dengan Cross-Beather Mill, dan ayakan analitik untuk menghasilkan serbuk dengan distribusi ukuran yang disebutkan di atas (2-5 µm). Telah divariasikan pula persentase bahan anti gumpal dalam campuran dan frekuensi proses jet milling untuk mengidentifikasi parameter yang akan menghasilkan distribusi ukuran 2-5 µm. Distribusi ukuran partikel hasil mikronisasi tersebut kemudian dikonfirmasi dengan alat analisa ukuran partikel (PSA) dan morfologinya dengan mesin scanning electron microscope (SEM). Dari hasil karakterisasi, material dengan campuran anti gumpal Cab-O-Sil sebanyak 10% dipastikan memiliki sebaran ukuran tersebut.
KAJIAN METEOROLOGI TRANSMISI COVID-19 DI PROVINSI DKI JAKARTA Abdullah Ali; Mangapul P. Tambunan; Rudy P. Tambunan
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 22 No. 1 (2021): June 2021
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v22i1.4627

Abstract

Intisari Akhir tahun 2019 menjadi awal dari menyebarnya Coronavirus Diseases 2019 (Covid-19) ke seluruh dunia. Virus ini pertama kali ditemukan di Wuhan, Cina karena banyaknya pasien dengan gejala pneumonia, yang diduga berasal dari pasar seafood di Wuhan. Sejak tanggal 2 Maret 2020, kasus Covid-19 pertama kali terkonfirmasi di Provinsi DKI Jakarta, dan menjadi kasus pertama di Indonesia. Hingga bulan Desember 2020, kasus positif  Covid-19 terus mengalami kenaikan. Banyak penelitian dilakukan untuk mengetahui sifat virus, transmisi, dan faktor-faktor yang mempengaruhi transmisinya, salah satunya adalah faktor meteorologi. Hasil penelitian di Cina dan Iran yang merupakan negara sub tropis menunjukkan bahwa unsur temperatur dan kelembaban relatif memiliki kaitan dengan penambahan jumlah kasus positif. Begitu juga hasil penelitian di Brazil yang merupakan negara tropis menunjukkan bahwa terdapat korelasi negatif antara intensitas radiasi matahari dengan kasus positif. Di Indonesia, penelitian mengenai pengaruh faktor meteorologi terhadap transmisi Covid-19 belum banyak dilakukan. Penelitian ini bertujuan untuk mengkaji transmisi Covid-19 di Provinsi DKI Jakarta dari sudut pandang meteorologi. Hasil kajian dari data selama 6 bulan menunjukkan bahwa tidak terdapat pengaruh antara unsur-unsur meteorologi dengan transimisi Covid-19 di Provinsi DKI Jakarta. Distribusi spasial kenaikan kasus harian tidak mengikuti pola perubahan angin, dan nilai koefisien korelasi Pearson untuk unsur kelembaban, temperatur, dan intensitas radiasi matahari memiliki nilai yang sangat kecil.   Abstract The end of 2019 was the beginning of Coronavirus 2019 (Covid-19) spread throughout the world. This virus was first discovered in Wuhan, China, where many patients showed symptoms of pneumonia and are thought to have originated in a seafood market in Wuhan. Since March 2, 2020, the first positive patient was confirmed in DKI Jakarta and became the first case in Indonesia. Until December 2020, positive cases of Covid-19 continued increasing. Many studies have been carried out to find the virus behaviors, transmission, and the factors that influence the transmission, one of which is meteorological factors. Research in China and Iran, which are subtropical countries, shows that temperature and relative humidity strongly correlate with the increasing number of positive cases. Likewise, the research results in Brazil, which is a tropical country, show a negative correlation of solar radiation to positive cases. In Indonesia, research on the influence of meteorological factors on the transmission of Covid-19 has not been widely carried out. This study aims to examine the transmission of Covid-19 in DKI Jakarta from a meteorological perspective. The study results from 6 months of data show no significant influence between meteorological elements and the Covid-19 transmission in DKI Jakarta. The spatial distribution of daily rate increases does not follow the pattern of wind direction changes, and the Pearson correlation coefficient ??for temperature, temperature, and radiation has very small values.
Preface JSTMC Vol. 22 No. 1 June 2021: Foreword and Acknowledgement Vol. 22 No. 1 June 2021
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 22 No. 1 (2021): June 2021
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Appendix JSTMC Vol. 22 No.1 June 2021: Author Index & Keyword Index Vol. 22 No.1 June 2021
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 22 No. 1 (2021): June 2021
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PEMANFAATAN DATA SATELIT GMS MULTI KANAL UNTUK KEGIATAN TEKNOLOGI MODIFIKASI CUACA Muhamad Djazim Syaifullah; Satyo Nuryanto
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 17 No. 2 (2016): December 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v17i2.525

Abstract

IntisariTulisan ini menyajikan pemanfaatan data satelit GMS (Geostationary Meteorological Satellites) multi kanal untuk informasi perawanan dalam rangka mendukung kegiatan teknologi modifikasi cuaca. Pemanfaatan data satelit meliputi proses pengunduhan data, proses kalibrasi dan visualisasi citra satelit sehingga dapat diinterpretasi. Pemrosesan data satelit juga meliputi jenis dan tipe awan serta ukuran butir awan. Dengan diketahuinya tipe dan jenis awan maka pemilihan target awan dalam pelaksanaan Teknologi Modifikasi Cuaca (TMC) dapat lebih efektif. Data Satelit GMS yang berupa data PGM untuk berbagai kanal telah dimanfaatkan untuk analisis cuaca dan mendukung pelaksanaan kegiatan Teknologi Modifikasi Cuaca (TMC). Dari analisis beberapa kanal Infra Merah (IR) dapat diperoleh tipe/jenis awan dan ukuran butiran awan yang sangat bermanfaat untuk kepentingan Teknologi Modifikasi Cuaca. Diperlukan pengelolaan data yang lebih intensif baik manajemen data maupun kontinuitas pengunduhan data untuk menjamin kelancaran analisis. Selain itu juga diperlukan validasi lapangan misalnya dengan data radar analisis menjadi semakin akurat.  AbstractThis paper presents the utilization of GMS (Geostationary Meteorological Satellites) multichannel satellite data for cloud cover information in order to support the activities of weather modification technology or cloud seeding. These utilizations covering the process of data downloading, process calibration and visualization of satellite imagery so that it can be interpreted. Processing of satellite data also includes the type of cloud as well as cloud grain size. By knowing the type of cloud, the cloud target selection in the execution of Weather Modification Technology can be more effective. From the analysis of several Infrared (IR) channels can be obtained type/kind of cloud and grain size of the clouds that are beneficial to the interests of cloud seeding. It is required a more intensive data management and continuity of data download. It is also necessary field validation for example with radar data. The purpose of data management was the data processing became more efficient. 
KARAKTERISTIK HUJAN DAN AWAN PENGHASIL CURAH HUJAN HARIAN TINGGI BERDASARKAN DATA MICRO RAIN RADAR (Studi Kasus : Wilayah Dramaga, Bogor) Sara Aisyah Syafira; Djazim Syaifullah; Findy Renggono
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 17 No. 1 (2016): June 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v17i1.535

Abstract

IntisariKejadian hujan di wilayah Bogor yang seringkali dikaitkan dengan kejadian banjir di wilayah Jakarta dan sekitarnya menjadi dasar pentingnya studi karakterisasi awan-awan penghasil curah hujan harian tinggi di wilayah Bogor tersebut. Suatu instrumen cuaca, yaitu micro rain radar (MRR),  merupakan instrumen yang cukup potensial dalam hal ini, tetapi belum banyak dimanfaatkan di daerah tropis, khususnya Indonesia. Dalam penelitian ini, dilakukan karakterisasi hujan dan awan-awan penghasil curah hujan harian tinggi di wilayah Dramaga, Bogor berdasarkan data MRR. Hasil analisis terhadap data MRR ini dengan cukup jelas memperlihatkan bahwa kejadian hujan dengan akumulasi curah hujan harian tinggi di daerah tersebut utamanya dihasilkan oleh awan-awan konvektif yang mencapai ketinggian puncak awan sekitar 4.5 km, dengan kejadian hujan berkisar pada siang, sore, dan malam hari.  AbstractRain events in Bogor area that are often associated with flood occurrences in Jakarta and surrounding areas become important basic of characterization studies of clouds producing high daily rainfall in the Bogor area. A weather instrument, namely micro rain radar (MRR), is an instrument that is considerable potential in this regard, but has not been widely used in tropics, especially Indonesia. In this study, characterization of rain and clouds producing high daily rainfall in Dramaga, Bogor based on MRR data were conducted. Analysis results of the MRR data quite clearly show that occurrences of rain with high daily rainfall accumulation in the area were mainly produced by convective clouds which reached a height of cloud tops about 4.5 km, with rain events happened generally at afternoon, evening, and night. 
PERBANDINGAN PROFIL HUJAN VERTIKAL RADAR CUACA DENGAN MICRO RAIN RADAR SELAMA KEJADIAN HUJAN SEDANG (Studi Kasus : Intensive Observation Period 2016) Sunu Tikno; Rino Bahtiar Yahya; Sara Aisyah Syafira
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 17 No. 2 (2016): December 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v17i2.536

Abstract

IntisariMicro Rain Radar (MRR) merupakan suatu instrumen pengamatan hujan, yang beroperasi secara vertikal. Sementara itu, radar cuaca WR-2100 biasa digunakan untuk membuat suatu profil yang berupa cakupan area.  Akan tetapi, dengan pengolahan lebih lanjut, data suatu radar cuaca seperti radar cuaca WR-2100 tersebut juga dapat digunakan untuk menampilkan profil vertikal salah satu parameternya di suatu lokasi tertentu. Penelitian kali ini membandingkan profil vertikal hujan di Dramaga, Bogor berdasarkan nilai rain rate nya yang diperoleh dari MRR yang beroperasi secara langsung di lokasi tersebut dengan profil serupa yang diperoleh dari radar cuaca WR-2100 yang beroperasi di lokasi berbeda, yaitu di Serpong, Tangerang Selatan. Hasil penelitian menunjukan bahwa kedua instrumen tersebut mendeteksi adanya nilai rain rate pada waktu-waktu yang bersamaan, namun dengan nilai yang lebih tinggi oleh radar cuaca WR-2100 untuk lapisan-lapisan yang lebih tinggi, yang terutama diduga karena atenuasi yang lebih besar dan signifikan yang terjadi pada proses pengukuran oleh MRR untuk lapisan-lapisan yang lebih tinggi pada saat kejadian-kejadian hujan sedang.  AbstractMicro Rain Radar (MRR) is an instrument to observe precipitation, especially rainfall, that operate vertically. Besides, a weather radar, WR-2100, is an instrument making profile in an area scope. By doing further processing, data of weather radar WR-2100 can be used to show vertical profile of a certain parameter in a certain location. This study compared vertical profile of rain rate at Dramaga, Bogor, based on data of MRR operated in same location with that based on data of weather radar WR-2100 operated in different location, which is Serpong, Tangerang Selatan. Results of the study showed that both instruments detected rain rate values on same times, while the values are higher at higher altitudes for weather radar WR-2100 than for MRR due to higher and more significant attenuation happened in MRR operation at higher altitude in moderate rainfall events. 
ANALISIS KEJADIAN EL NINO DAN PENGARUHNYA TERHADAP INTENSITAS CURAH HUJAN DI WILAYAH JABODETABEK (Studi Kasus : Periode Puncak Musim Hujan Tahun 2015/2016) Ardila Yananto; Rini Mariana Sibarani
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 17 No. 2 (2016): December 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v17i2.541

Abstract

IntisariBeberapa lembaga riset dunia dan badan-badan meteorologi beberapa negara di dunia menyatakan adanya kejadian El Nino Tahun 2015 terus berlanjut hingga tahun 2016. Adanya kejadian El Nino tersebut secara umum akan mempengarui intensitas curah hujan di sebagian besar wilayah Indonesia termasuk wilayah Jabodetabek. Analisis kejadian El Nino Tahun 2015/2016 dilakukan dengan menganalisis nilai NINO 3.4 SST Index, Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD), pola sebaran suhu permukaan laut (Sea Surface Temperature) dan juga gradient wind di Samudra Pasifik Tropis. Sedangkan Analisis Curah Hujan dilakukan dengan menggunakan data TRMM (Tropical Rainfall Measuring Mission). Dari penelitian ini dapat diketahui bahwa berdasarkan parameter NINO 3.4 SST Index dan Southern Oscillation Index (SOI) pada pertengahan Tahun 2015 hingga awal Tahun 2016 telah terjadi fenomana El Nino pada level kuat, adanya peningkatan suhu permukaan laut di sebagian besar wilayah Indonesia sejak Bulan November 2015 yang diikuti dengan penurunan indeks Dipole Mode hingga menjadi bernilai negatif (-) sejak awal Tahun 2016 serta dengan adanya peralihan Angin Muson Timur ke Angin Muson Barat di wilayah Indonesia telah menyebabkan peningkatan curah hujan yang cukup signifikan dalam batas normal di wilayah Jabodetabek pada puncak musim hujan Tahun 2015/2016 (November 2015 - Februari 2016) walaupun pada Bulan November 2015 hingga Februari 2016 tersebut masih berada pada level El Nino kuat.   AbstractVarious research institutions in the world that work in the field of Meteorology and Climatology predicted an El Nino events in 2015 continued into 2016. The El Nino events phenomenon in general will affect to intensity of the rainfall in most parts of Indonesia, including the Greater Jakarta area. El Nino events phenomenon Analysis by Nino 3.4 SST index, Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD), Sea Surface Temperature (SST) and gradient wind in the Tropical Pacific Ocean. While rainfall intensity analysis using TRMM (Tropical Rainfall Measuring Mission) data. From this research it is known that based on the parameters NINO 3.4 SST index and the Southern Oscillation Index (SOI), it is known that there was a strong El Nino event occurred in mid-2015 to early 2016, the increase of sea surface temperature in most parts of Indonesia since November 2015 followed by declines Dipole Mode Index to be negative (-) since the beginning 2016 as well as the shift East monsoon to West monsoon in Indonesia has led to significant rainfall increased within normal limits in the Greater Jakarta area at the peak period of the rainy season 2015/2016 (November 2015 - February 2016) although in November 2015 until February 2016 El Nino event is still at the strong level.  
ANALISIS KEJADIAN EL NINO TAHUN 2015 DAN PENGARUHNYA TERHADAP PENINGKATAN TITIK API DI WILAYAH SUMATERA DAN KALIMANTAN Ardila Yananto; Saraswati Dewi
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 17 No. 1 (2016): June 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v17i1.544

Abstract

IntisariKejadian El Nino yang berdampak pada sebagian besar wilayah Indonesia akan selalu berasosiasi dengan kekeringan akibat dari berkurangnya intensitas curah hujan. Lebih jauh akibat dari kekeringan tersebut telah menimbulkan meningkatnya titik api secara signifikan dibandingkan dengan tahun-tahun sebelumnya khususnya di wilayah Sumatera dan Kalimantan, dimana hal tersebut telah mengakibatkan terjadinya bencana asap pada tahun 2015. Tujuan utama penulisan karya tulis ini adalah untuk menganalisis kejadian El Nino pada tahun 2015 dan pengaruhnya terhadap peningkatan titik api di wilayah Sumatera dan Kalimantan baik dalam skala temporal maupun spasial. Dari hasil penelitian ini dapat diketahui bahwa berdasarkan parameter NINO 3.4 SST Indeks dan Southern Oscillation Index (SOI) pada tahun 2015 telah terjadi fenomana El Nino pada level kuat yang ditandai dengan adanya pelemahan sirkulasi walker sehingga pusat tekanan rendah perpindah dari Samudera Pasifik bagian Barat ke Samudera Pasifik bagian Timur, dimana hal ini telah menyebabkan adanya penurunan intensitas curah hujan (anomali negatif) disebagian besar wilayah Indonesia terutama pada bulan Juli hingga Oktober 2015 dan oleh karena itulah pada bulan Juli hingga Oktober 2015 tersebut terjadi peningkatan jumlah titik api yang sangat tajam di wilayah Indonesia dimana persebaran titik api tersebut sebagian besar terkonsentrasi di Provinsi Sumatera Selatan dan Kalimantan Tengah. AbstractEl Nino that impact most areas of Indonesia will always be associated in drought due to reduced rainfall intensity. Drought, in further, has resulted in increasing titik apis significantly compared to previous years, especially in the Sumatra and Kalimantan, that was creating smog disaster in 2015. The main objective of this research was to analyze the occurrence of El Nino in 2015 and its influence on increase of titik api in Sumatera and Kalimantan both in temporal and spatial scale. From this research it is known that based on the NINO 3.4 SST index and the Southern Oscillation Index (SOI) it is known there was a strong El Niño event occurred in 2015 showed there was a weakening Walker circulation so that the low pressure center moved from Western part of the Pacific Ocean to the Eastern Pacific Ocean, where this has led to a decrease rainfall intensity (negative anomaly) in most parts of Indonesia, especially from July to October 2015 and because of that from July to October 2015 there was very hight increasing number of titik apis in Indonesia where the spread of titik api the mostly concentrated in the province of South Sumatera and Central Kalimantan. 

Filter by Year

2000 2022


Filter By Issues
All Issue Vol. 23 No. 2 (2022): December 2022 Vol. 23 No. 1 (2022): June 2022 Vol. 22 No. 2 (2021): December 2021 Vol. 22 No. 1 (2021): June 2021 Vol. 21 No. 2 (2020): December 2020 Vol. 21 No. 1 (2020): June 2020 Vol 20, No 2 (2019): December 2019 Vol. 20 No. 2 (2019): December 2019 Vol. 20 No. 1 (2019): June 2019 Vol 20, No 1 (2019): June 2019 Vol. 19 No. 2 (2018): December 2018 Vol 19, No 2 (2018): December 2018 Vol. 19 No. 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 2 (2018) Vol 18, No 2 (2017): December 2017 Vol. 18 No. 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol. 18 No. 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol. 17 No. 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol 17, No 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol. 17 No. 1 (2016): June 2016 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 2 (2015): December 2015 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol 15, No 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol. 15 No. 2 (2014): December 2014 Vol 15, No 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol. 15 No. 1 (2014): June 2014 Vol 14, No 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol. 14 No. 2 (2013): December 2013 Vol 14, No 1 (2013): June 2013 Vol. 14 No. 1 (2013): June 2013 Vol 14, No 1 (2013): June 2013 Vol 13, No 2 (2012): December 2012 Vol. 13 No. 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol. 13 No. 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol. 12 No. 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol 12, No 1 (2011): June 2011 Vol 12, No 1 (2011): June 2011 Vol. 12 No. 1 (2011): June 2011 Vol. 11 No. 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol. 11 No. 1 (2010): June 2010 Vol 3, No 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol. 3 No. 2 (2002): December 2002 Vol 3, No 1 (2002): June 2002 Vol. 3 No. 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol 2, No 1 (2001): June 2001 Vol. 2 No. 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol. 1 No. 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol 1, No 1 (2000): June 2000 Vol. 1 No. 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 More Issue