cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash Tareg Abdalla Abdalla; David O. Koteng; Stanley M. Shitote; M. Matallah
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-010

Abstract

Modern concretes lay emphasis on high strength in order to reduce structural member sizes to reduce materials used; high early strength to promote fast construction; high durability to reduce maintenance costs; and the incorporation of industrial and agricultural wastes to reduce environmental degradation. The incorporation of industrial and agricultural wastes into concrete as cement replacement materials reduces the amount of cement used in the production of concrete and the CO2emissions arising from cement production. Sugarcane bagasse is a waste product from the extraction of juice from sugar cane. It is estimated that 1.7 million tons of bagasse are produced worldwide every year. Much of the bagasse is used as boiler fuel and to produce electricity, and the ash is dumped in earth fills, resulting in critical environmental pollution that requires immediate attention. Available literature shows that when burned under controlled conditions, a pozzolanic ash of high silica content can be obtained, which can be used in concrete production with several advantages. This study investigates the mechanical properties of concrete designed for high strength and incorporating processed sugarcane bagasse ash in amounts of 10–40% by weight of cement in a binary combination with silica fume. Concrete workability in the fresh state and compressive, flexural, and tensile strengths in the hardened state are investigated. Water absorption of hardened concrete is also investigated as an indicator of potential durability. The results show that the mix containing 10% SCBA has the highest mechanical strength, and increasing the SCBA percentage reduces water absorption. However, the workability of concrete in the fresh state reduces substantially with an increase in ash content. Doi: 10.28991/CEJ-2022-08-06-010 Full Text: PDF
A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP) Mohamad S. Sulaiman; Habib M. Mohamad; Anis A. Suhaimi
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-05

Abstract

Peat soil incorporated materials from fragmented organic constituents that originated in submerged wetlands. Peat soil has a particular index property that accounts for more than 75% of its organic content. Due to its low shear strength, high moisture content, high compressibility, low specific gravity, restricted bearing capacity, irregular shrinkage, and instability, peat soil is interpreted as a challenging soil for the building industry. The purpose of this study is to look at the index properties of Klias, Beaufort peat soil, and eco processed pozzolan (EPP), as well as to investigate the strengthening and stiffening effects of EPP stabilization treatment on peat soil and the association between EPP and linear shrinkage effects of peat. The linear shrinkage used to measure the shrinkage behaviour of peat soil consists of untreated samples, namely peat soil, and treated samples, which are peat soil in addition to EPP with a concentration of 20% and 30%, respectively. A scanning electron microscope (SEM) is employed to produce images of a sample by scanning the surface of an untreated peat sample and treated peat samples with EPP. High moisture content with an average of 580% was reported for the KBpt area. EPP can potentially help to reduce the shrinkage by almost 66.66%. Additionally, the results showed that by adding EPP as filler material to the peat soil, shrinkage behaviour decreases significantly for untreated peat soil and treated peat soil with EPP, with 4.29% reduced to 1.43% significantly. Correspondingly, the crystallization process occurred between peat soil and EPP, which contributed to the reduction of shrinkage and tension crack in peat soil and produced Muscovite, which is appeared and identified as mineral that important in rock-forming mineral. Doi: 10.28991/CEJ-2022-08-06-05 Full Text: PDF
Slenderness in Steel Fibre Reinforced Concrete Long Beams Ravpreet Kaur; Harvinder Singh
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-011

Abstract

Slenderness influences in steel fibre reinforced concrete (SFRC) long beams are not adequately addressed in current concrete design regulations. The present guidelines are confined to semi-empirical formulations for limiting slenderness ratio, but largely restricted to RC beams. Many scholars have already examined RC long beams and successfully presented the slenderness ratio formula for RC long beams. This article proposes a novel term for limiting the slenderness ratio for SFRC long rectangular beams based on the fundamental principle of mechanics and taking into account the slenderness impact of RC long beams as well as the flexural moment capacity of SFRC beams. The suggested formulation for limiting slenderness ratio agrees closely with experimental data and may reliably forecast the mode of collapse. The proposed limiting slenderness ratio formulation takes into consideration beam end circumstances, loading conditions, concrete strengths, steel, tension and compression reinforcement ratios, and transverse reinforcement ratios, among other factors. It is revealed that a wide variety of slenderness limits may be achieved for varied sets of design parameters. The researchers' predictions and the suggested equation are compared to the test results of 9 SFRC beams. The suggested equation fits well with the results of the tests that have been done so far. Doi: 10.28991/CEJ-2022-08-06-011 Full Text: PDF
Land Procurement for Public Interest Against Destroyed Land: Natural Events and Legal Certainty Embun Sari; Muhammad Yamin; Hasim Purba; Rosnidar Sembiring
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-06

Abstract

Based on a case study on the construction of the Semarang-Demak Toll Road, this study aims to investigate and investigate land acquisition for the public interest for land that has been destroyed as a result of natural events and its legal certainty. The research method used is socio-legal with primary data in identification, field measurements, and other supporting data. Semarang-Demak Toll Road property acquisition demonstrated tidal inundation on the north shore. Subsidence exacerbates Semarang's flooding. On flooded land, sea dikes and retention ponds prevent tidal floods. If just for transportation, the Semarang-Demak Toll Road can be built in flood-free areas or over the sea, like Bali's Mandra Toll Road. Land acquisition concerns delayed the Semarang-Demak Toll Road. Lack of land limitations has delayed land purchases. In the Semarang-Demak Toll Road land acquisition, destroyed land is not a problem under Indonesian law. 2021's Regulation 18 defines destroyed land. Destroyed land will drive people to take better care of their land and be more concerned about global warming or land subsidence. The state honors the landowner's emotional connection by paying for spiritual care. Doi: 10.28991/CEJ-2022-08-06-06 Full Text: PDF
Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow Cahyono Ikhsan; Ariva S. Permana; Arlendenovega S. Negara
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-01

Abstract

The continuous movement of riverbed particles due to turbulent flow determines the stability of non-cohesive riverbeds and banks during riverbed and bank erosion and sedimentation. This study emulated the stable channel design by deriving the low maintenance cost of the channel through bed protection by an armor layer. The study investigated the effects of shear stress and grain size uniformity to determine the minimum non-cohesive armor layer thickness for the stability of riverbeds under steady uniform flow conditions. Experiments were conducted with four different discharges, five armor material gradations, and five bed-slope variations in a full-scale flume. We observed and recorded the behaviors of the five gradations of armor materials for given discharges and bed slopes. Eighty data points were recorded and analyzed. The hydraulic analysis of the flow along with the soil mechanics analysis of the armor materials was done. The soil mechanic analysis was particularly focused on the uniformity coefficient of the armor layer, Cu, to derive the armor layer equation. However, for the manageability of the study, we set the limit of the Cu between 3.0 and 6.0. From the viewpoint of non-erodibility, a wider Cu value indicated a thinner armor layer. Variables that govern the armor layer thickness and the layer thickness itself were derived and proposed. The variables, namely Cu, shear stress (t0 and tc), and mean diameter of the bed load and armor materials (Db50 and Da50). Our results show that these variables governed the thickness of the armor layer, and this is expected to contribute to the design of stable natural channels, which can minimize the cost of irrigation canal maintenance and development. Doi: 10.28991/CEJ-2022-08-06-01 Full Text: PDF
Asphalt Elasticity Modulus Comparison Using Modified Laboratory LWD Against UMMATA Method Lucky Caroles
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-012

Abstract

Highway consultants need pavement structure strength to examine and design. With advances in computer, sensor, and microelectronic technologies, the light weight deflectometer (LWD) can measure granular and asphalt layers. This portable, easy-to-use tool is suggested. This article was designed to improve LWD Pusjatan's accuracy and distinguish it from other testing methods. This study compares the LWD Pusjatan and UMMATA (Universal Material Testing Apparatus) methods for measuring modulus of elasticity on different materials. Boussinesq elastic theory is used to compute the modulus of most LWDs. In a semi-elastic environment, modulus is the connection between pressure and displacement in a rigid or flexible basis. The deflection value is derived from the process of vibrations caused by a load delivered from a given height onto a test item, with the wave/vibration collected by an acceleration measuring instrument, such as a geophone or accelerometer. The modulus of elasticity provided by the AUDL (Laboratory Deflection Test Equipment) method is less than that produced by the UMMATA method. According to the test results, the average value of AC Base material is 7.52% less than that of AC Base. The average value of AC BC material is just over 0.3%. These results indicate that more testing is necessary when using the AUDL methodology to detect correlations that might serve as a basis for comparison. Thus, the AUDL test method may be used as a nondestructive testing technique. This kind of non-destructive technique should be used frequently so that simulations of field circumstances are more accurate. Doi: 10.28991/CEJ-2022-08-06-012 Full Text: PDF
Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network Mohammad Al-Rawashdeh; Isam Yousef; Mohammad Al-Nawaiseh
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-07

Abstract

Indeed, utilizing a base isolation system in RC structures can remarkably minimize the possibility of failure, particularly in seismic-prone countries. Despite that, the design of these structures is a long procedure that consists of choosing the appropriate isolator to optimize the nonlinear behavior of the superstructure. Moreover, the numerical simulations require huge computational effort when high accuracy is required. In recent decades, scientists and engineers have applied numerous estimation approaches such as multiple linear regression and artificial neural networks to decrease the required cost and time for daily design problems. Thus, this study's main objective is to solve the difficulty of rapid response prediction by using soft-computing techniques. Additionally, it aims to study the capability of multiple linear regression and artificial neural networks in estimating the seismic performance of base-isolated RC structures under earthquakes. A nonlinear response history analysis of four different lead rubber-bearing isolated RC structures will be performed in order to determine the responses of these structures. Subsequently, the prediction models will be developed using the responses of the structures as inputs for multiple linear regression and artificial neural networks. Lastly, the reliability of both estimation approaches in terms of the response of base-isolated structures will be investigated by comparing the prediction models' capability. In general, the results of the study show that artificial neural networks provide considerably better accuracy in estimating base-isolated structures compared to multiple linear regression, and their performance results in reliable prediction. Doi: 10.28991/CEJ-2022-08-06-07 Full Text: PDF
Analysis of Pedestrian Performance by Integrating both Quantitative and Qualitative Factors Neil Andrew I. Meneses; Jocelyn S. Buluran
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-02

Abstract

The importance of non-motorized movements, explicitly walking, and its corresponding impact on social, economic, and environmental aspects has always been overlooked due to the convenience brought by motorized vehicles. An automobile-dependent society mirrors the rise and worsening of several transportation problems, such as road-wide traffic congestion, massive fuel consumption, and excessive CO2emissions. In response to these aggravating situations and in support of various national and international calls, the main objective of this study was to extract the significant factors influencing the pedestrian level of service and walkability and to subsequently develop a predictive mathematical model for evaluating pedestrian conditions. Factors influencing the pedestrian level of service and walkability were initially identified through an extensive review and evaluation of existing studies, literature, and other relevant resources. A cause-and-effect analysis was used to develop an Ishikawa Diagram tackling pedestrian performance. The finalized factors were incorporated into the development of the Pedestrian Performance Assessment Questionnaire (PPAQ), which was utilized for data acquisition. Survey responses were then subjected to factor analysis after satisfying several tests for assumptions and suitability to extract the root causes influencing pedestrian performance. The validated root causes were then integrated to form the Pedestrian Performance Audit Tool (PPAT), a tool used in evaluating pedestrian areas in Tarlac City, Philippines. Data was analyzed through ordinal regression analysis to develop the multi-objective pedestrian performance prediction model. Results showed that there are six critical predictors of pedestrian performance unified in the final mathematical model: Pedestrian Space (PS), Official’s Intervention (OI), Ambiance (A), Vibrance (V), Street Vendors (SV), and Trash Bins (TB), and is the most significant contribution of the study. The model's validity was ascertained through a confusion matrix, which resulted in an acceptable rating. The comparison between calculated and perceived values together with the use of odds ratios served as the basis for the interpretation of some of the key results and findings. Finally, recommendations were also presented which can be a basis for the development of sustainable programs and interventions for the improvement of the pedestrian system. Doi: 10.28991/CEJ-2022-08-06-02 Full Text: PDF
Using CRF Tool for Analyzing the Resilience of Cities S. M. Al-Jawari; N. AbdulRazak Hasach Albasri; O. Jassim Al-Mosherefawi
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-013

Abstract

The new sustainable development goals set by the UN include a goal of making cities inclusive, safe, sustainable, and resilient. Cities are growing at huge rates, and conditions of deteriorating QOL̛s are increasing in the form of poor access to services, and slums are remarkable, especially in the cities of the Middle East; hence, the research problem can arise from a lack of knowledge regarding the in determination of a way to assess the resilience of cities to develop mechanisms that will improve the quality of urban life. In this study, a tool called CRF has been applied for the assessment of the city's resilience principles of health and quality of life, economics and social, infrastructure and environmental systems, and the principles of governance and strategic leadership. The research aims to determine the efficiency of Kufa City in achieving the principles of resilience according to the CRF. The research is based on the descriptive analytical method. The research concluded that the city of Kufa achieves low levels of some indicators of resilience, especially on the imposition of security and the rule of law, transportation, and communications, and achieves reasonable rates of resilience regarding opportunities for creating a sustainable economy and achieving basic needs. Doi: 10.28991/CEJ-2022-08-10-013 Full Text: PDF
Sustainability Performance of Voided Concrete Slab Using Waste Plastic Bottles Donald Kwabena Dadzie; A. K. Kaliluthin
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-09

Abstract

The present study is aimed at investigating the cost assessment of incorporating waste plastic bottles in the manufacture of voided concrete slabs; assessing the depth ratio vis-à-vis the cost reduction of incorporating waste plastic bottles in the manufacture of voided concrete slabs; assessing the energy consumption and CO2 emission obtained by incorporating waste plastic bottles in the manufacture of voided concrete slabs; and evaluating the impact of the depth ratio on embodied energy consumption and CO2 emission. The study was conducted on five types of slab specimens made: (1) conventional solid slab specimens; (2) slab specimens incorporated with 5% air-filled plastic bottles; and (3) slab specimens incorporated with 10% air-filled plastic bottles. Slab specimens of size 1000×1000×150 mm thick incorporated with 0, 5, and 10% waste plastic bottles were considered for the analysis of sustainability with respect to cost, energy, and CO2 savings. As part of the findings, it was revealed that the incorporation of waste plastic bottles into concrete slabs results in a reduction in the cost and volume of concrete. Again, using recycled plastic bottles in the slabs saved money, but for each percentage of bottles used, additional materials (plastic bottles, chicken wire, etc.) and labour were needed, which added to the cost. It was also revealed that embodied energy and CO2 emissions decrease as the percentage of plastic bottles in the slab increases. The study has confirmed that the void slab made with plastic bottles is more sustainable than the traditional solid slab system when it comes to cost, energy use, and CO2emissions. Doi: 10.28991/CEJ-2022-08-11-09 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue