cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
The Impact of the Environment and People’s Attitudes on Greywater Management in Slum Coastal Settlements Idawarni Asmal; Edward Syarif; Samsuddin Amin; Muhammad A. Walenna
Civil Engineering Journal Vol 8, No 12 (2022): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-12-05

Abstract

The rapid population growth in many countries will ultimately impact the provision of essential services and engender many challenges, such as inadequate sanitation. Indonesia has an extensive coastline and densely populated coastal areas that have grown sporadically, creating slums. These areas have long been associated with poor greywater management. Greywater is dumped into beaches, roads, and yards without pre-treatment, thus harming the environment and society. This study aims to identify various factors influencing community actions to manage and overcome greywater-related problems in coastal slum areas. Using methods by combining qualitative and quantitative approaches. The influential factors in the physical condition of the built environment, the natural environment, community activities, and government involvement related to greywater were analyzed qualitatively, while the public understanding of greywater management was assessed quantitatively. The results showed that these four factors significantly influenced people's attitudes towards wastewater treatment. The findings show that these four factors affect people's mind-set about handling greywater, which becomes an obstacle to changing their attitudes and views on greywater. The four factors have the same level and cannot be separated in dealing with greywater. Treatment strategies are in accordance with coastal nature, settlements physical conditions and communities are then chosen Treatment Horizontal Flow. Doi: 10.28991/CEJ-2022-08-12-05 Full Text: PDF
Assessing the Wastewater Pollutants Retaining for a Soil Aquifer Treatment using Batch Column Experiments V. R. Raji; S. Packialakshmi
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-011

Abstract

In this study, the Secondary Treated Waste-Water (STWW) to infiltrate through the soil matrix, hence eliminating the contaminants in the effluent. For this study, three types of soil, such as loamy sand, fine sand, and clayey soil, were subjected to two cycles of wetting and drying to assess the type of soil that removes the maximum contaminants under which cycle. At diverse locations, soil samples were collected and examined to determine the soil types. Likewise, STWW was collected from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) and Perungudi Sewage Treatment Plant (PSTP) to illustrate the quality of water before Soil Aquifer Treatment (SAT). About 1.5 m in height and 8 mm in diameter of fabricated acrylic material columns are used for the soil aquifer treatment efficiency studies. Water quality parameters, namely pH, TDS, and turbidity, were monitored throughout the study. All the organic compounds present in water were reduced to a higher level only in the fine sand in the one-day wetting/drying cycle. pH was reduced from 8.55 to 7.5, TDS was reduced from 1580 mg/l to 850 mg/l, and Turbidity was reduced from 7.24 to 4.04 NTU. This proposed method is to minimize the amount of water pollution from the environment. It is an effective way to manage aquifer recharge (MAR). SAT is the easiest method, aquifer and/or soil-based treatment systems improve the effluent quality of wastewater by removing the trace elements in the aquifer during the recharge of groundwater. It is likewise attractive for technologically advanced as well as emerging countries, and it is supple enough to allow adaptation to home-grown requirements by uniting it with predictable natural or bringing about water and technologies of wastewater treatment. Doi: 10.28991/CEJ-2022-08-07-011 Full Text: PDF
The Influence of the Fundamental Parameters on the Mechanical Behavior of Coarse-Grained Soils Ghizlane Ardouz; Khadija Baba; Latifa El Bouanani; Fatima Ezzahraa Latifi; Asmaa Dardouch
Civil Engineering Journal Vol 8, No 8 (2022): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-08-012

Abstract

Coarse-grained soils are a type of soil frequently found in civil engineering projects. The mechanical characterization of these soils is very difficult because of the presence of large-sized elements that disturb or prevent the realization of the tests. However, there is still no rational procedure to characterize coarse soils and determine their mechanical characteristics (cohesion and friction angle) for the calculation of slope stability or structures. The objectives of the research work are to contribute to the improvement of the knowledge of the mechanical behavior of matrix coarse-grained soils and to propose a rational procedure to characterize them. In order to achieve these objectives, it is important to understand the influence of the fundamental parameters related to the mode of reconstitution on the mechanical behavior of the coarse soils: volume fraction, particle size distribution and spread, consolidation level, and the initial state of the matrix. Tests are carried out using the large-sized triaxial testing device in drained conditions. With natural coarse-grained soils, it is very difficult to conduct repeatability tests to validate the results. For this reason, we will study a particular category of coarse-grained soils composed of inclusions (coarse elements) within a fine sandy matrix (matrix coarse-grained soils), using a reference soil composed of a mix of sand and gravel. The results show that for both states of sand compaction (ID=0.4 and ID = 0.8), the shear strength of the soil increases with the increase in the proportion of gravel. This increase is more marked in the case of uniform 8/10 mm gravel. Thus, the size of inclusions has no significant influence on the value of qmax. Doi: 10.28991/CEJ-2022-08-08-012 Full Text: PDF
Modeling Trip-generation and Distribution using Census, Partially Correct Household Data, and GIS Akash Anand; Varghese George
Civil Engineering Journal Vol 8, No 9 (2022): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-09-013

Abstract

The efficiencies of urban transport systems in several cities are drastically affected due to difficulties imposed by rapid urbanization and the proliferation of private modes of transport. The conventional four-stage travel demand modeling approach provides an ideal platform to formulate strategies to rectify problems in urban transport. Trip generation is the first stage in this exercise (where trip production and trip attractions are modelled), followed by trip distribution in the second stage. The present work related to the development of models for trip generation and trip distribution necessitated the use of census data related to the number of households in each zone since the available revealed preference (RP) data compiled based on household interview surveys was partially incorrect. A review of the literature indicated that studies on the use of sparsely available and partially inaccurate data such as revealed preference and zone-specific secondary data on trip generation and trip distribution were limited. In the present study, the use of the initial trip generation regression models developed based on existing household survey data resulted in prediction errors ranging between 26% and 32%. Modeling efforts after applying corrections to zone-specific characteristics based on secondary data and the use of trip rate per household later resulted in prediction errors of less than ±5%. In the latter phase of work related to trip distribution modeling, a log-linear regression model was developed based on a smaller refined set of the revealed preference data obtained by eliminating erroneous data in a stage-wise manner. The use of the calibrated and validated model ensured that the errors in predicted trip frequencies were less than 0.6%. Here, the information on the inter-zonal aerial distances that formed part of the trip distribution model was obtained using GIS approaches that employed the moment area method, which considered the intensity of land use at the sub-zone level. The combined strategy incorporates the use of GIS-based approaches to determine inter-zonal aerial distances, and the use of the refined relationship between trip interchanges and the inter-zonal aerial distances in the development of a reliable log-linear regression model for trip distribution contributed towards attaining higher accuracies in travel demand estimation. The modeling approaches described herein do not rely on the use of sophisticated technology, and time-consuming data processing. The study will provide the basic framework for transport planners to formulate better strategies for travel demand modeling where available data is noisy and less reliable. Doi: 10.28991/CEJ-2022-08-09-013 Full Text: PDF
Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation Heriansyah Putra; Irgie Yudhistira
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-04

Abstract

Due to its high organic matter, moisture content, and low bearing capacity, peat soil needs to be stabilized for use as a subgrade. The soybean crude urease calcite precipitation (SCU-CP) method is a grouting technique using carbonate precipitation and soybean as a biocatalyst. This study aims to analyze the effect of the SCU-CP method and soil density on the California bearing ratio (CBR) value to obtain the best stabilization alternative for reducing the field’s compaction energy. The CBR test was conducted in both soaked and unsoaked conditions. The study was conducted with variations of 50%, 70%, and 90% density of Standard Proctor and used grouting treatment with a combination of optimum SCU-CP solution for the treated samples. The results showed a significant increase in CBR, with an average increase of more than two times compared to untreated samples. In terms of compaction effort, a density of 70% Proctor in unsoaked conditions with SCU-CP treatment is the best alternative. However, considering the soil saturation level and the swelling of the subgrade layer, 90% proctor density with SCU-CP treatment can be recommended as a stabilization method without dewatering. This research concluded that the SCU-CP method could improve the CBR value of peat soil. Doi: 10.28991/CEJ-2022-08-11-04 Full Text: PDF
Application of Integrated-Weight Water Quality Index in Groundwater Quality Evaluation Thanh Giao Nguyen; Kim Anh Phan; Thi Hong Nhien Huynh
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-020

Abstract

Groundwater is one of the most crucial freshwater resources in many parts of the world. However, the growth of the population and different economic activities have negatively impacted groundwater quality. This study aims to assess the groundwater quality in An-Giang province, Vietnam, from 2017–2020 and investigate its suitability for drinking via a new integrated-weight water quality index (IWQI). The samples were collected at thirteen wells in dry and rainy seasons and analyzed for eleven physicochemical parameters, including pH, total dissolved solids (TDS), total hardness, nitrate (NO3ˉ), ammonium (NH4+), iron (Fe), manganese (Mn), arsenic (As), mercury (Hg), lead (Pb), and coliform. These values were compared to the Vietnamese standard. The entropy weight method and the Criteria Importance Though Inter-criteria The correlation weighting method was integrated to compute the weights in IWQI. The results showed that NH4+and coliform concentrations were consecutively higher than the standard over the study period. No detection of As, Hg, and Pb concentrations in groundwater was in 2019 – 2020. There were significant statistical differences between parameters from 2017–2020 in the dry and rainy seasons. The results of IWQI revealed that about 40% of the total samples in 2020 were categorized as unsuitable for drinking. IWQI values range from 72 to 7973 in 2020, 12 to 3020 in 2019, 21 to 1115 in 2018, and 53 to 2246 in 2017. Most samples with high IWQI values are located near the burial pits of African fever-infected swine. The findings of this study could provide further information about the changes in groundwater quality from 2017–2020 in An Giang province, Vietnam, and the IWQI method can be proposed for other studies to evaluate groundwater quality effectively. Doi: 10.28991/CEJ-2022-08-11-020 Full Text: PDF
Numerical Analysis of Seepage Failure Modes of Sandy Soils within a Cylindrical Cofferdam Aissa Bensmaine; Naima Benmebarek; Sadok Bensmebarek
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-06

Abstract

Soil seepage failure within cofferdams is a dangerous phenomenon that always poses difficulties for designers and builders of excavations in zones with high water levels. When the hydraulic head difference H between the upstream and downstream sides reaches a critical height, the downstream soil seepage failure occurs. Depending on soil properties, soil-wall interface characteristics, and cofferdam design, different seepage failure modes can be observed: heaving, boiling, liquefaction, or failure by reduction of the passive earth pressure. In the literature, there are differences, sometimes very large, in the critical value of the hydraulic head loss Hc/D inducing seepage failure given by several methods proposed for stability verification. Then, complex cases are generally approached using simplifying assumptions and adopting large safety factors to take account of uncertainties. In practice, geotechnical engineers deal with many kinds of excavations and different shapes of cofferdams, such as rectangular, square, or circular, which generate three-dimensional (3D) flow conditions. Axisymmetric seepage flow through the soil in a circular cofferdam is often used to model such 3D seepage flow. In this paper, using the numerical code FLAC, several numerical simulations are carried out in axisymmetric groundwater flow conditions to analyze the seepage failure modes of cohesionless sandy soils within a cylindrical cofferdam. The effects of the cofferdam radius, internal soil friction, soil dilatancy, and interface friction on the Hc/D value and failure mode are studied. The numerically obtained seepage failure modes are presented and discussed in various scenarios. The present results, illustrated in both tables and graphs, show a significant decrease in the value of Hc/Dinducing seepage failure, with a decrease in the cofferdam radius. They also indicate the sensitivity of the seepage failure mode to internal soil friction, soil dilatancy, interface friction, and cofferdam radius. As well, new terms are proposed for the seepage failure mode designations based on the 3D view of the downstream soil deformation. Doi: 10.28991/CEJ-2022-08-07-06 Full Text: PDF
A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands Saliha Benalia; Leila Zeghichi; Zied Benghazi
Civil Engineering Journal Vol 8, No 8 (2022): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-08-07

Abstract

Great efforts are being made to minimize the negative impact of the Portland cement industry on the environment by using industrial by-products during the manufacture of clinker or by the partial replacement of cement during the preparation of concrete. However, the carbon footprint remains relatively high in addition to the large consumption of natural resources such as sand and other aggregates. A solution to these problems is to completely replace Portland cement with a new generation of mineral binders, commonly known as geopolymers, which have properties similar to those of Portland cement. These binders can be obtained by the alkali-activation of siliceous or aluminosilicate materials. This study aims to develop pozzolanic type binders at room temperature (20°C) from the alkali-activation of aluminosilicate materials based on metakaolin and blast furnace slag at different percentages. Different activators were employed, including solid (NaOH) and liquid (Na2SiO3.nH2O). The optimal mixtures were used for making mortars based on natural sand (NS) and concrete recycled sand (CRS). A comparative experimental study of the physical, mechanical, and microstructural characteristics of the two types of mortars was conducted. Cement mixtures with a high amount of slag and an association of sodium hydroxide and sodium silicate gave the best physico-mechanical properties. A drop in the compressive strength of mortars prepared with CRS was observed after 365 days, but it was still higher than those with NS. The obtained results show the possibility of designing an eco-friendly CRS-based geopolymer mortar that is more resistant than NS-based mortar with a homogeneous and integrated microstructure. Doi: 10.28991/CEJ-2022-08-08-07 Full Text: PDF
Machine Learning Based Prediction of Urban Flood Susceptibility from Selected Rivers in a Tropical Catchment Area Benjamin Nnamdi Ekwueme
Civil Engineering Journal Vol 8, No 9 (2022): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-09-08

Abstract

Unexpected flood due to climate change has caused tremendous damage to both lives and properties, especially in tropical areas. Nigeria Southeastern region has been devastated by flood from extreme weather conditions. Flood mitigation involves accurate forecasting, precise prediction, evaluation, and intervention strategy. This study aims at using machine learning solutions to investigate and predict flood susceptibility from selected rivers in the south-eastern region of Nigeria. The regional hydrogeological data from 1981–2019 was collected and analysed. The remote sensing datasets from the National Aeronautics and Space Administration (NASA), Modern-Era Retrospective Analysis for Research and Applications (MERRA) version 2 & 3 platforms from five selected rivers were processed. With the data output of the hydrology, streamline flows, and exposed geology, the ARIMA model was built and used to forecast the flood. The result shows that the flooding pattern would increase by 15-150% within 2020-2024. The forecast indicated that within five years, the river discharge for Adada, Ajali, Imo, Ivo, and Otanmiri will increase within ranges 200-702 m3s-1, 16-26 m3s-1, 508-1280 m3s-1, 43-68.5 m3s-1, and 22-35.1 m3s-1 respectively. Climate change has impacted severely on flood in the region. This knowledge will help the regional agencies and authorities in adapting to flood innuendoes and assessment of hydrologic extremes. Doi: 10.28991/CEJ-2022-08-09-08 Full Text: PDF
Study of Lateral Load Influence on Behaviour of Negative Skin Friction on Circular and Square Piles Omar Shawky; Ayman I. Altahrany; Mahmoud Elmeligy
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-08

Abstract

Negative skin friction developed on the pile surface causes many problems when piles are built in fully saturated clay. In this work, a study of NSF on a square cross-section pile corresponding to the circular pile circumference was developed. The pile was modeled as a concrete element, embedded and fully contacted with fully saturated soft clay. The clay layer is supported on a sand layer as a sub-base using ABAQUS software, and the NSF was developed on piles due to the consolidation of the clay over a 5-year period. A square pile has been found to provide lower NSF values than a round pile. Then, for the first investigation, both piles were loaded with lateral loads at the top to investigate the effect of the horizontal load on the NSF values, as there is no literature or study done on this point. The results emphasized that lateral loads reduce the NSF developed on piles. A parametric study was performed to investigate the parameters affecting the NSF values induced on piles, such as soil permeability, ballast, and lateral load values. It was concluded that square piles provide better NSF values than round piles for both single piles and pile groups. Doi: 10.28991/CEJ-2022-08-10-08 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol. 10 No. 11 (2024): November Vol 10, No 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue