cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Experimental and Analytical Study of High-Strength Concrete Containing Natural Zeolite and Additives Iswarya Gowram; Beulah. M
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-019

Abstract

The study compares the durability of Natural Zeolite with Metakaolin, Silica Fume, and Fly Ash on high-strength concrete. 300 concrete specimens were tested for compressive strength before and after an acid attack, modulus of elasticity, water absorption, and rapid chloride permeability. 5%, 10%, and 15% of the cement were replaced with cementitious elements while maintaining the same quantity of Natural Zeolite. In this investigation, the water-cement ratio was maintained at 0.35. After 28 days, the specimens were tested for durability. Samples of all mixes were TG/DT and FTIR tested. The optimal percentages of cementitious materials that resulted to the maximum durability enhancements were reported as the study results. Experimental results showed that Natural Zeolite and Metakaolin strengthened the durability of concrete. All the data show that 5% Natural Zeolite with 10% Metakaolin performs well. Good R2values and appropriate independent variable coefficients suggested that the regression findings for high-strength concrete durability were accurate. The P values of all models were less than 0.005 and the F values were statistically significant and appropriate; therefore, the generated models predict concrete's strength with authenticity. Doi: 10.28991/CEJ-2022-08-10-019 Full Text: PDF
Enhanced Road Network to Reduce the Effect of (External – External) Freight Trips on Traffic Flow Huda Abdulameer Abbas; Hayder Abbas Obaid; Ali Abdul Ameer Alwash
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-015

Abstract

The transportation system is often described as the lifeblood of modern society. Roads constitute a fundamental part of this system for both passenger and freight transports, a well-functioning freight transportation system is an essential element in any successful economy. Hilla is one of the most densely populated cities in Iraq. The road network in Hilla city is under additional load due to (external - external) trips, especially freight trips by trucks passing through the city's main entrances to cross into neighboring districts and provinces. This is due to the city's strategic location, which connects Baghdad with the southern provinces, making it an important transit route. The objective of this research is to study a proposal for modifying and developing the road network in the city of Hilla by adding new roads to the current network in order to reduce the negative impact of freight trucks passing through the city, especially (external - external) trips, by using Trans CAD and ArcGIS software network analysis. The result of network analysis shows that the suggested roads will reduce the total (travel time and distance) for the same origin and destination points by 9%, and 30%, compared with the current distance and time, respectively, while improving the level of service from D to C at peak hours for freight vehicles. Doi: 10.28991/CEJ-2022-08-11-015 Full Text: PDF
Bridge’s Overall Structural Scheme Analysis in High Seismic Risk Permafrost Regions Zhihua Xiong; Jianbing Chen; Chen Liu; Jinping Li; Wenwen Li
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-01

Abstract

The mechanism of pile-soil reaction in frozen ground is not clear at present, but it is obvious that the reduction of dead weight will be beneficial to the seismic resistance of bridges. In view of the limited bridge engineering practice in high seismic risk permafrost regions, the paper addressed the structural performance of the superstructure and its effect on piles in these special regions. Four superstructures with different dead weights were compared, and bored piles were designed. Numerical simulations were implemented to investigate the refreezing time of the bored pile foundation. The concrete pile cooled rapidly in the first two days. The refreezing times of the GFRP, prestressed concrete T-girder, integrated composite girder, and MVFT girder were 15d, 37d, 39d, and 179d, respectively. The refreezing time of a pile in the same soil layer is mainly affected by the pile’s diameter, and it is significantly correlated to the square of the pile diameter. It reflects that the selection of bridge superstructures in the permafrost region is very important, which has been ignored in previous studies. The pile length and pile diameter of the lighter superstructure can be shorter and smaller to reduce the refreezing time and alleviate the thermal disturbance. Doi: 10.28991/CEJ-2022-08-07-01 Full Text: PDF
Daily Maximum Rainfall Forecast Affected by Tropical Cyclones using Grey Theory Nipaporn Chutiman; Monchaya Chiangpradit; Butsakorn Kong-ied; Piyapatr Busababodhin; Chatchai Chaiyasaen; Pannarat Guayjarernpanishk
Civil Engineering Journal Vol 8, No 8 (2022): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-08-02

Abstract

This research aims to develop a model for forecasting daily maximum rainfall caused by tropical cyclones over Northeastern Thailand during August and September 2022 and 2023. In the past, the ARIMA or ARIMAX method to forecast rainfall was used in research. It is a short-term rainfall prediction. In this research, the Grey Theory was applied as it is an approach that manages limited and discrete data for long-term forecasting. The Grey Theory has never been used to forecast rainfall that is affected by tropical cyclones in Northeastern Thailand. The Grey model GM(1,1) was analyzed with the highest daily cumulative rainfall data during the August and September tropical cyclones of the years 2018–2021, from the weather stations in Northeastern Thailand in 17 provinces. The results showed that in August 2022 and 2023, only Nong Bua Lamphu province had a highest daily rainfall forecast of over 100 mm, while the other provinces had values of less than 70 mm. For September 2022 and 2023, there were five provinces with the highest daily rainfall forecast of over 100 mm. The average of mean absolute percentage error (MAPE) of the maximum rainfall forecast model in August and September is approximately 20 percent; therefore, the model can be applied in real scenarios. Doi: 10.28991/CEJ-2022-08-08-02 Full Text: PDF
Adsorption Behavior of Heavy Metal Ions by Hybrid Inulin-TEOS for Water Treatment Wan Norfazilah Wan Ismail; Mohamad Irfan Arif Irwan Syah; Nur Hanisah Abd Muhet; Nurul Hidayah Abu Bakar; Hartina Mohd Yusop; Nurlin Abu Samah
Civil Engineering Journal Vol 8, No 9 (2022): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-09-03

Abstract

The present work reports the adsorption behavior involved in the adsorption of heavy metal ions using a hybrid inulin-tetraethoxysilane (TEOS) adsorbent produced through the sol-gel process. An aqueous multi-element solution was used in order to examine the inulin-TEOS adsorbent efficiency in removing Cd2+, Co2+, and Ni2+ ions. The effects of the contact duration, adsorbent dosage, initial concentration, and solution pH on the adsorption of the targeted metal ions in batch systems were evaluated. The optimal conditions for the removal of all targeted heavy metals were as follows: 30 mg of an adsorbent dosage at pH 4 and 5 minutes of contact time with an initial concentration of 0.5 mg/L. A one-way analysis of variance (one-way ANOVA) with a replication test showed that all parameters had significant differences at a p-value of 0.05. At the optimum condition, 92.59%, 90.27%, and 86.472% of Cd2+, Ni2+, and Co2+ were removed, respectively. Findings from kinetic studies suggest that the pseudo-second order model can successfully describe the overall adsorption process. Additionally, the adsorption process can be adequately explained using an intra-particle diffusion model with diffusion rate constants following the sequence of Kint,1 > Kint,2 for Co2+ and Ni2+ and Kint,1 > Kint,2 > Kint,3 for Cd2+ in each step. The results suggest that Ni2+ fits with the Langmuir isotherm, while Cd2+ and Co2+ better fit the Freundlich one. Finally, the adsorbent can be reused and is able to retain a good percentage of removal, with percentage difference decreases of 1.99%, 3.29%, and 4.12% for Cd2+, Ni2+, and Co2+, respectively, after the fifth cycle. The hybrid inulin-TEOS bio-sorbent has good adsorption capacity and durability, which could offer a low-cost practical cleaner production process for removing targeted analytes from wastewater. Doi: 10.28991/CEJ-2022-08-09-03 Full Text: PDF
Forecasting the Effects of Failure Criteria in Assessing Ship Structural Damage Modes Aditya Rio Prabowo; R. Ridwan; T. Tuswan; Fitrian Imaduddin
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-03

Abstract

The failure to achieve satisfactory results will cause immense losses in major projects. Nevertheless, the modeling limitations and phenomenon assumptions represented by failure criteria can significantly influence the final results—e.g., the damage mode, affecting its quantification—thus representing an interesting topic for technical assessment. This work aims to forecast the effects of several failure criteria on the damage occurring due to structural loading schemes, such as compression, torsion, and tensile tests. Failure criteria are taken based on the proposal of pioneer researchers and include those of Peschmann (P), Germanischer Lloyd (GL), Liu (LIU), and Rice–Tracey and Cockroft–Latham (RTCL). A series of nonlinear finite element analyses (NLFEA) are conducted by inputting these criteria into different loading schemes. To obtain reliable validation, the proposed models are designed based on previous laboratory experiments. The numerical results of NLFEA in the forms of damage mode, i.e., tearing, plastic deformation, and torsion, are cross-checked with experimental data. The results show that numerical modeling using the LIU criterion produces slightly larger discrepancies compared with experimental data. This indication is founded on the analysis of stress–strain, load–displacement, and shear stress–strain during the tensile test, compressive load, and torsion load, respectively. According to this work, we formulate recommendations based on the forecast tendency and accuracy for each damage mode subjected to failure criteria. Therefore, future works can adopt the findings in our current work when choosing to apply specific criteria in structural modeling and load idealization. Doi: 10.28991/CEJ-2022-08-10-03 Full Text: PDF
Experimental Measurement and Simulation of Railway Track Irregularities L. Bouhlal; N. Lamdouar; F. Kassou
Civil Engineering Journal Vol 8, No 10 (2022): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-10-014

Abstract

The study of railway dynamics is still a productive area of research given the rapid technological evolution of this transport system regarding load and speed. Morocco is no exception to this rule, especially after the commissioning of the first high-speed line in Africa. This study describes herein an experiment to measure vertical and transverse accelerations in a locomotive on a railroad line connecting the two cities of Mchraa Ben Abbou and Marrakech. The observed accelerations constitute the vehicle's dynamic responses while running at a constant speed on a track with irregularities (also known as track geometry), which is considered the main driving force of train dynamics and the track system. They are used to evaluate passenger comfort and safety. It can also be observed that body accelerations increase with the introduction of track irregularities as compared to a smoother track. In this study, an analysis of these experimental measurements is performed based on boxplot simulations comparing the distributions of the transverse and vertical components of vehicle acceleration. It was found that the medians and first and third quartiles of both distributions are very close. Doi: 10.28991/CEJ-2022-08-10-014 Full Text: PDF
Stabilization of Gypsum Clay Soil by Adding Lime Ikram Saidate; Abd Elmajid Berga; Tayeb Rikioui
Civil Engineering Journal Vol 8, No 11 (2022): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-11-010

Abstract

Often, the temperature and water variation exist in semi-arid areas of a clayey soil leads to vertical and horizontal settlements, cracks in the soil and in general disorder to the building installed on this soil. The objective of this work is to stabilize the local gypsum clay soil, which poses problems at the level of self-construction built on it. Chemical soil stabilization can improve soil properties. In fact, adding natural lime to these clays can provide an ideal solution for stabilizing them through interesting modifications to their geotechnical properties throw the experimental tests on both unstabilized and stabilized soil samples by adding lime in quantities of 2, 4, and 6%, in percentages by the soil's weight, prepared at room temperature, The unconfined compressive strength (UCS) at different curing ages is measured, The results obtained provide a significant increase in compressive strength and modulus of Elasticity which allow better qualities and improve strength parameters throughout any phase of earthwork construction design that leads to strengthening subgrades, reducing the thickness, and, as a result, low construction costs. The results of the study show that (1) for the best utilization effect, the optimum percentage of lime is 6%; (2) the UCS is 3.23 times of the pure soil after curing of 28 days under the optimum percentage of lime; (3) the curing age has a significant effect on strength; (4) the main reason for the strength increase of the modified soil is that the crystal produced by the pozzolanic activity fills the pores of the soil. The ideal percentage is 6% lime treatment with a resistance of 2.3 MPa and 135.60 MPa the value of elasticity modulus at 28 days. Doi: 10.28991/CEJ-2022-08-11-010 Full Text: PDF
Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process Zainab Kadhim Taher; Mohammed Q. Ismael
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-01

Abstract

High-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall stability, flow, and wheel tracking tests. Field Emission Scanning Electron Microscopy (FESEM) was utilized to understand the microstructure changes of modified asphalt and estimate the dispersion of NS within the asphalt. The results revealed that using NS–asphalt mixtures as a surface layer in paving construction improved pavement performance by increasing stability, volumetric characteristics, and rutting resistance before and after aging. The FESEM images showed adequate dispersion of NS particles in the mixture. Results indicated that adding 4% of NS to asphalt mixtures effectively enhanced the pavement’s performance and rutting resistance. Doi: 10.28991/CEJ-SP2023-09-01 Full Text: PDF
Mechanical Analysis of Subgrades of Road Pavements in Life Cycle Assessment Marina Donato; Bruno Guida Gouveia; Alexandre Simas de Medeiros; Marcelino Aurélio Vieira da Silva; Sandra Oda
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-012

Abstract

When evaluating the sustainability of a construction project, it is important to verify the influence of climate uncertainty and the depletion of natural resources that permeate the strategies to make infrastructure possible, especially those associated with the transportation sector, which have great potential to generate environmental impacts. Thus, the objective of this study is to evaluate the effect that subgrade material variation, which constitutes highway pavements with flexible surfacing, can generate in the Life Cycle Assessment (LCA) of these infrastructures. For this purpose, pavements that had the same materials and thicknesses for the execution of the base (gravel soil-NG') and the subbase (clay soil LG'), but with subgrades composed of different types of tropical soils, classified as lateritic and non-lateritic, were proposed. The combination of these elements enabled the elaboration of pavements with different service lives and atmospheric emissions. The scope of the study included the phases of extraction and production of the inputs necessary to build the roadway envisioned in each scenario, as well as the construction phase itself, considering the operation of construction equipment. The LCA focused on the emission of greenhouse gases (GHGs) and the quantity of primary energy employed in the phases considered. It was concluded that the materials used in this study have similar mechanical behavior, and therefore the results of the design of the thicknesses of the asphalt overlay were close and consequently result in similar energy consumption and greenhouse gas emissions. Doi: 10.28991/CEJ-2022-08-07-012 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue