cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Optimization of Integrated Reservoir for Supporting the Raw Water Supply Shafur Bachtiar; Lily M. Limantara; Moh. Sholichin; Widandi Soetopo
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-07

Abstract

This research intends to analyze the optimal operation pattern for fulfilling the raw water demand, and it is conducted in the integrated cascade reservoir of Duriangkang-Muka Kuning, Batam City, Indonesia. However, Batam City is the economic center of the Riau Islands and absolutely needs enough raw water supplies to support its development. The need for raw water in Batam City is predicted to reach about 6,630.29 l/s in 2025. Due to the population growth that is estimated to reach about 1.8 million people in 2025 and the plan of Batam City development as an industry and tourism center, Batam City is faced with the condition that reservoir management becomes a very important thing for supporting the continuity of water supply. The methodology consists of collecting the supporting data, such as inflow, reservoir capacity curve, and data on water needs; then building the optimization model by determining the objective function and constraints of the integrated reservoir; and carrying out the optimization model by using linear programming and simulation models for the integrated reservoir operation. The result presents optimal reservoir operation of the integrated Duriangkang-Muka Kuning reservoirs. The reservoir operation consists of the boundary curve of upper and lower normal operation, the outflow for fulfilling the water need, and the rule of supply pumping from Duriangkang reservoir to Muka Kuning reservoir. It is hoped that the result can be used as a reference in operating the two reservoirs to fulfill the water needs of the Batam City population. Doi: 10.28991/CEJ-2023-09-04-07 Full Text: PDF
Spatial Modeling of Flood-Vulnerability as Basic Data for Flood Mitigation Iin Arianti; Muhammad Rafani; Nurul Fitriani; . Nizar
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-02

Abstract

Identifying risks in flood-prone areas is necessary to support risk management decisions. This research was conducted to establish a vulnerability model of flood hazards in the city of Pontianak. The model was based on the scoring and weighting of biophysical factors. The AHP method and logical formulations were used to establish the model. The result showed that the accuracy of the model used by AHP to determine the vulnerability of floods was 80% in Pontianak City. The accuracy of the model using logical formulations to determine the vulnerability level of a flood was 84%. The Kappa accuracy value in model 1 is 76.7%. The model of flood vulnerability explains that most of Pontianak City has a very high level of flood vulnerability, which is 31,440,568.8 m2 or 29.11% of the total research area of 108,003,319.8 m2. The vulnerable area is 29,945,485.7 m2 or 27.73%, and the less safe area is 22,126,936.3 m2 or 20.49%, with the safe area being 24,490,328.7 m2or 22.67% of the total area. This research contributes to the government to establish policies regarding flood management and urban development in the future, and as an effort to mitigate against flooding. Doi: 10.28991/CEJ-2023-09-04-02 Full Text: PDF
The Analysis of Sustainable Construction Strategies on the Likupang Special Economic Zone (SEZ) R. Arifuddin; R. U. Latief; S. Hamzah; D. Pangemanan; E. Aprianti; R. Fadlillah
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-07

Abstract

Many challenges are faced in implementing sustainable construction in Indonesia. This research aims to find an effective method for adopting sustainable construction. The method used combines qualitative and quantitative methods by incorporating the identification of significant factors affecting the adoption of sustainable construction. In data collection with the SWOT system, FGDs and interviews provided accurate information regarding factors and strategies to promote sustainable construction, particularly in the Likupang SEZ Project. From the results of the study, the IFSC value for the promotion strategy of sustainable construction in the Likupang SEZ project is the social factor of 0.2, followed by the economic factor of 0.3, the environmental factor of 1.2, and the government support factor, business investment, and cultural factors of 1.4, respectively. The highest IFSC value was obtained for the human resource factor of 1.6. Thus, it can be concluded that human resources must be accompanied by government support along with business investment and cultural influences in order to realize adequate sustainable development projections for the Likupang SEZ project in the future. Doi: 10.28991/CEJ-SP2023-09-07 Full Text: PDF
Performance Evaluation of Fiber-reinforced Ferroconcrete using Response Surface Methodology Temitope F. Awolusi; Alenoghena I. Ekhasomhi; Oluwatobi G. Aluko; Olanike O. Akinkurolere; Marc Azab; Ahmed Farouk Deifalla
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-014

Abstract

Fibre-reinforced ferroconcrete is a new-generation type of concrete that has been found to have adequate performance. Global emissions of CO2 as a result of concrete production have damaged the earth's atmosphere. These emissions, together with construction waste, such as ceramic powder and aluminium waste, are considered one of the most harmful wastes to the environment, eventually leading to pollution. In this study, the fibre-reinforced ferroconcrete (FRFC) contained waste aluminium fibre, cement, ceramic waste powder, corrugated wire mesh, and fine and coarse aggregate. The cement content in the concrete mix was partially replaced with Ceramic Powder (CP) in proportions of 0%, 10%, and 20%, while the Aluminum Fibers (AF) were added in proportions 0, 1, and 2% to the concrete mix. The variation of ceramic powder and aluminium fibres was done using the central composite design of Response Surface Methodology (RSM) to create experimental design points meant to improve the fibre-reinforced ferroconcrete's mechanical performance. The results conclude that the mechanical performance of the FRFC was slightly improved more than conventional concrete, where at 20% replacement of ceramic powder and 1% addition of aluminium fibre to the concrete mix. There was more compressive, flexural, and split tensile strength increase than conventional concrete, with control concrete having strengths of 13.060, 5.720, and 3.110 N/mm2 and ferroconcrete 15.88, 6.68, and 3.83 N/mm2 respectively. This was further confirmed with microstructural images. The RSM model, with parameters such as; contour plots, analysis of variance, and optimisation, was used to effectively predict and optimise the responses of the ferroconcrete based on the independent variables (Aluminum fibre and Ceramic Powder) considered. The results of the predicted data show a straight-line linear progression as the coefficient of determination (R2) tends to 1, indicating that the RSM model is suitable for predicting the response of the variables on the FRFC. Doi: 10.28991/CEJ-2023-09-04-014 Full Text: PDF
Experimental Establishing of Moving Hydraulic Jump in a Trapezoidal Channel Najah K. Al-Bedyry; Maher A. A. Kadim; Saman H. Hussein; Zainab S. Al-Khafaji; Fatimah N. Al-Husseinawi
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-08

Abstract

This research was prepared as a preliminary laboratory study to achieve a moving hydraulic jump with controlled discharges. It is an initial part of the study that is being prepared to treat the salt tide occurring in the Shatt al-Arab due to the lack of water imports that were coming from the Karun and Karkheh rivers from Iranian territory, as this scarcity caused a salt tide that affected significantly the environmental reality of the city of Basra and the agricultural lands surrounding the Shatt al-Arab, such as the Shatt al-Arab district and the Siba orchards. As part of the proposed solutions, a moving hydraulic jump is created that pushes the salt tongue into the Persian Gulf; the results were promising. A moving hydraulic leap is a good example of unstable super- and sub-critical flow regimes and is regarded as a specific case of unsteady flow in a channel. There aren't many published experiments on this particular flow type, and the quantitative simulation of such a flow state has some inherent complexity. An experimental setup was created for this work in order to assess the hydraulic performance of a moving hydraulic jump in a trapezoidal flume. A sluice gate was installed at the flume's upstream edge to provide an unstable supercritical flow regime, movable hydraulic jumps along the channel, and temporal water stages at the gate's upstream side for the various downstream end boundary situations. Several flow factors, including energy head, pressure head, and flow depth, were estimated from the recorded data. The study found connections between discharge and shifting hydraulic jump variables. By employing relatively stable momentum and energy formulas, simple and time-independent formulas were developed that accurately predicted the pressure head in the subcritical region of an unstable mixed flow. As a result, the moving hydraulic jump factor can be correctly predicted using time-independent correlations by using the discharge variation as a boundary scenario. Doi: 10.28991/CEJ-2023-09-04-08 Full Text: PDF
Control Parameters for the Long-Term Tensile and Compressive Strength of Stabilized Sedimentary Silt Wagner Teixeira; Jair Arrieta Baldovino; Ronaldo Izzo
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-03

Abstract

The yellow-layer soils of the Guabirotuba formation in Brazil are problematic due to their expansive nature and low-bearing capacity. There has been little exploration into stabilizing these soils using a calcium-based binder. In addition, existing methods for dosing lime to fine and coarse-grained soils using the porosity-to-lime index (η/Liv) have primarily focused on non-optimal compaction conditions to determine the split tensile and compressive strengths and empirical relationships between both tests while ignoring the study of optimal lime-soil mixes compaction conditions. Therefore, the objective of this research is to examine the unconfined compressive (qu) and split tensile (qt) behavior of a traditional Guabirotuba yellow silt stabilized with dolomitic hydrated lime (L) under standard, intermediate, and modified effort conditions and the correlation between qu and qt. The lime-soil blends were cured for up to 180 days, and 3-9% lime percentages were used under optimum compaction conditions (maximum dry density and optimum water content). The porosity/lime index (η/Liv), a semi-empirical index, was utilized to investigate the evolution of qu and qt over the short and long term. η/Livvaried between 6-25% by volume. Furthermore, the qt/qu index was calculated to be between 0.12-0.20, depending on the curing time, independent of lime addition and compaction effort used. Equations well-suited to a power function dosing qt and qu based on curing time and η/Livindex was proposed. Finally, some dosages of soil-lime mixtures were proposed for possible applications in geotechnical engineering, applying the porosity and volumetric binder index in optimal compaction conditions, which had not been applied before for lime-improved soils. Doi: 10.28991/CEJ-2023-09-04-03 Full Text: PDF
Thermal Stabilization of Permafrost Using Thermal Coils Inside Foundation Piles Alexander Lavrik; George Buslaev; Mikhail Dvoinikov
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-013

Abstract

The article deals with the issue of thermal stabilization of soils to preserve the stability of pile foundations in permafrost conditions. The purpose of the work is to develop a technology for year-round freezing of soils by supplying coolant cooled by a refrigeration machine to thermal elements placed inside piles. In this work, the temperature regime of the system "pile foundation – soil" in the stationary formulation of the problem was simulated, and the influence of the depth of placement of thermal elements inside the piles on the soil temperature was investigated. The simulation was performed in the COMSOL software environment, taking into account the heat transfer due to thermal conduction and convection. In the presented model, a platform is fixed on piles, and a heat source is placed on the platform. It is found that an area of thawed soil has formed on the leeward side of the pile foundation. It is concluded that, under certain conditions, deep thermal elements for freezing or keeping the soil frozen should be placed at different depths. Thus, under given conditions, a greater depth of the thermal element placement in the pile, closest to the soil thawing zone, allows to reduce the surface temperature of the pile below ground level and, therefore, increase its bearing capacity. The authors also propose an original unit for soil thermostabilization based on the absorption cooling machine, which can operate at the expense of thermal energy generated by technological sources located on the platform. Doi: 10.28991/CEJ-2023-09-04-013 Full Text: PDF
Serviceability Analysis of Pedestrian Overhead Bridges and Underpasses Fazal E. Ghafoor; Malik Sarmad Riaz; Ahmed F. Deifalla; Marc Azab; Omer Javaid; Muhammad Nouman Sattar; Muhammad Maqbool Sadiq
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-09

Abstract

A grade-separated crossing allows a bicycle/pedestrian to continue over or under a barrier without conflict with a vehicle. However, the serviceability of these facilities is compromised in underdeveloped countries, including Pakistan. This research examines the effectiveness of pedestrian bridges and underpasses in terms of their usage by pedestrians. A total of 80,017 pedestrian crossings were observed at four sites (3 overhead bridges and one underpass) for four weeks (one week per site) using manual and video photography. The data about age, gender, and serviceability of each pedestrian was collected and analyzed using the chi-square test, t-test, and descriptive analysis. The study site selection was based on different characteristics, i.e., the number of lanes, type of median barriers, and type of facility (bridge/underpass). The analysis shows that most of the pedestrians (71.83%) did not use the crossing facilities, resulting in the poor serviceability of these structures. A comparison between bridges and underpasses also reveals that underpass usage (62.5%) is statistically more significant than bridge usage (11.62%). There is an effect of age (p<0.001) and gender (p<0.001) on the serviceability of these facilities as well, with pedestrians aged more than 25 years old and females using the facilities more than their counterparts. The study also provides implications for the effect of barriers and the height of facilities on the serviceability of these facilities. The number of lanes and the presence of a median barrier, as well as the height of the facility (number of steps), are the primary factors influencing the serviceability of grade-separated pedestrian crossings. Doi: 10.28991/CEJ-2023-09-04-09 Full Text: PDF
Short-, Medium-, and Long-Term Prediction of Carbon Dioxide Emissions using Wavelet-Enhanced Extreme Learning Machine Mohamed Khalid AlOmar; Mohammed Majeed Hameed; Nadhir Al-Ansari; Siti Fatin Mohd Razali; Mohammed Abdulhakim AlSaadi
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-04

Abstract

Carbon dioxide (CO2) is the main greenhouse gas responsible for global warming. Early prediction of CO2 is critical for developing strategies to mitigate the effects of climate change. A sophisticated version of the extreme learning machine (ELM), the wavelet enhanced extreme learning machine (W-EELM), is used to predict CO2 on different time scales (weekly, monthly, and yearly). Data were collected from the Mauna Loa Observatory station in Hawaii, which is ideal for global air sampling. Instead of the traditional method (singular value decomposition), a complete orthogonal decomposition (COD) was used to accurately calculate the weights of the ELM output layers. Another contribution of this study is the removal of noise from the input signal using the wavelet transform technique. The results of the W-EELM model are compared with the results of the classical ELM. Various statistical metrics are used to evaluate the models, and the comparative figures confirm the superiority of the applied models over the ELM model. The proposed W-EELM model proves to be a robust and applicable computer-based technology for modeling CO2concentrations, which contributes to the fundamental knowledge of the environmental engineering perspective. Doi: 10.28991/CEJ-2023-09-04-04 Full Text: PDF
Towards Sustainable Revitalization: The Public Squares Characteristics - Led the Adaptive Urban Revitalization Mechanisms Zakariya Osamaa Ibrahim; Sally Fakhri Khalaf Abdullah
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-015

Abstract

The public square is a specifically designed urban space that includes many natural and formative elements that achieve communication among the main axes of the city and facilitate the movement of users through it. The public squares (PSs) in many cities, especially Baghdad, need to be revitalized. The Adaptive Urban Revitalization (AUR) strategy, which focuses on improving the quality of urban spaces for PSs to enhance their location, activity, and purpose, can be used for this revitalization. The result is a new space that is adaptive and convenient with regard to the sustainable revitalization of the contemporary city. The main research problem is how to make PSs attractive places for users. There is an absence of clear knowledge about the mechanisms of the AUR strategy, its relationship to the characteristics of PSs, and its influence on the revitalization process. Considering this problem, the main research goal is to reveal the characteristics of PSs as factors that affect the mechanisms of AUR and the role that these influences have in developing a clear approach to the AUR strategy to make PSs attractive places for users. This can be done by improving their conditions and promoting their use more effectively. To achieve this goal, the research will address improving the quality of urban spaces through the application of the AUR strategy. The focus is on addressing urban problems that have an effect on PSs, obtaining the indicators of AUR, applying them to the selected case studies and testing them mathematically. The results of the research produced a clear approach with regard to utilizing the strategy of AUR in PSs. It examined all mechanisms represented by Urban Response, Urban Accessibility, and Dynamic Activities. The results showed a positive relationship of these mechanisms on the characteristics of PSs. Doi: 10.28991/CEJ-2023-09-04-015 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue