cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Stress Path Behaviour and Friction Angle Transition Due to the Cyclic Loading Effects Habib Musa Mohamad; Adnan Zainorabidin; Adriana Erica Amaludin
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-010

Abstract

In various aspects, peat soil is different from mineral soil. Peat is a biogenic deposit that emerged within the last 10,000 years, during the post-glacial (Holocene) era. Peat is a soft soil that is unable to support external loads without experiencing significant deformations. Tyre pressure from automobiles and/or aeroplane wheels on paved surfaces creates traffic load, which can manifest as static or dynamic types of loading. To resolve the problem with peat soils, a thorough understanding of the static and dynamic behaviour of peat is still required. Many people who live near regularly used highways feel traffic vibration, and it is important to comprehend the nature of this issue to make predictions about potential solutions to this problem. As such, this study aims to investigate the cohesion (c) and friction angle (φ) properties of peat soil after it has been subjected to cyclic stress. Monotonic triaxial tests are conducted to ascertain the initial shear strength characteristics of the soil. Cyclic triaxial tests are performed with half of their maximum deviator stress to simulate the behaviour of peat soil under various effective stresses and frequencies of loading that are applied with 100 number of cycles. After applying various numbers of cycles of dynamic loading, the post-cyclic monotonic shear strengths were subsequently evaluated. It has been noted that irregular behaviour tends to occur more frequently at higher frequencies, particularly between 2 and 3 Hz. With higher frequencies being applied, the reduction in cohesion and friction angle becomes more evident. Doi: 10.28991/CEJ-2023-09-04-010 Full Text: PDF
Shear Performance of GFRP Reinforced Concrete Beams with Seawater and Chopped Fiber Waleed Abdallah; Abdelrahman M. Farrag; Ahmed F. Deifalla; Amal. H. Ibrahim; Hamdy M. Mohamed; Ahmed H. Ali
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-05

Abstract

This paper reports an experimental study on the behavior and shear strength of concrete beams reinforced with longitudinal GFRP bars mixed with sea water. In order to evaluate how much concrete contributes to shear resistance, seven beams were tested in bending. Similar in size and concrete strength, the beams were longitudinally reinforced with glass fiber-reinforced polymer bars; however, they did not even have shear reinforcement. The beams, which measured 3,100 mm in length, 400 mm in depth, and 200 mm in width, were conducted and tested up to failure. The test variables were longitudinal reinforcement ratios (1.0, 1.4, and 2.0%), chopped fiber content (0, 0.5, 2, and 3 kg/m3), and mixing water type (freshwater and seawater). The test findings showed that increasing the reinforcement ratio increased the neutral-axis depth and allowed the formation of more closely spaced fractures while decreasing the loss of flexural stiffness after cracking. By increasing the area of concrete in compression, this in turn enhances the contribution of aggregate interlock as well as the contribution of uncracked concrete. Furthermore, increasing the reinforcement ratio improves the dowel action, which reduces the tensile stresses that are created in the concrete around it. Doi: 10.28991/CEJ-2023-09-04-05 Full Text: PDF
Relationship of Rainfall Intensity with Slope Stability Mohammad Haziq Rosly; Habib Musa Mohamad; Nurmin Bolong; Noor Sheena Herayani Harith
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-06

Abstract

The impact of rainfall on landslides is not an uncommon issue worldwide, including in Malaysia. It is a major challenge for geotechnical engineers to ensure the constructed slope is safe and can sustain longer periods of time, including during heavy rainfall. Kota Belud, Sabah, has been selected as the study area to meet the study objectives. Heavy rainfall has been recorded every year within Kota Belud, which has caused a repetition of landslide occurrences within the hilly areas, especially during the monsoon season. Presently, there is no local procedure for determining the rainfall intensity value for slope stability analysis. This study utilized the rainfall intensity value from Hydrology Procedure 26. Seepage analysis conducted shows rainwater infiltration has caused the groundwater level to increase from rainfall starts until 0.5 m below ground level and decrease after rainfall stops, creating fluctuations in the groundwater level during the wet and dry conditions within the wetting front. The factor of safety of the slope shows a decreasing trend, with a reduction of around 27 to 33% after 24 hours of rainfall in conjunction with the changes in groundwater level. However, the factor of safety increased by around 3% from the initial condition after 48 hours. The objective of this study is to identify the factor of safety of a rainfall-induced slope within Kota Belud utilizing the rainfall intensity design limits from Hydrology Procedure 26. Doi: 10.28991/CEJ-SP2023-09-06 Full Text: PDF
Compilation of Parameter Control for Mapping the Potential Landslide Areas P. A. Maha Agung; M. F. Rouf Hasan; Adi Susilo; Mustaffa A. Ahmad; Mohd. J. Bin Ahmad; U. A. Abdurrahman; A. T. Sudjianto; Eko Andi Suryo
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-016

Abstract

Batu Tourism City is located in a mountainous area, so based on information from the BNPB, it has quite a large potential for landslides. Landslide hazards can frequently disrupt public traffic due to road cuts. Landslide mapping digitally will contribute to handling and mitigation activities since the database can be updated in real time to anticipate landslide hazards. This study aims to map landslide-prone areas located in the Payung zone, Songgokerto Village, and Batu City. Landslide areas can be determined by mapping analysis using GIS software. GIS can determine the classification level for a landslide susceptible area. Some input data that will influence landslides, such as rainfall, wind, earthquakes, etc., was collected as the control parameters. All parts of the study area could be classified as areas with minor, medium, and major potential for landslides. Primary data are collected from geo-surveying (aerial images) using drone devices for interpretation of landslide susceptibility areas, geophysical to identify the type of soil or rock layers that completed their behavior, and slip planes as well using geo-electric, geotechnical engineering to predict slope stability with the correlation from cone penetration test (CPT) data, and geo-hydraulic to observe the rainfall and the catchment area model using the available secondary data. Geometrically, measurement data found that the average slope angle at the upper and lower of the East Java Province highway is around 40–50o. Studies from geophysical data identified that the hilly terrain in the object study area has been dominated by the weathered rock layer. Geotechnical data obtained shows the soil layers at the slope location will be stable with the water content under 35% during the dry season and may become unstable with the water content reaching over 50% due to the increase in saturation during the rainy season. The landslide that occurred was more caused by seepage behavior from surface water flow towards the sloping plane, and then the safety factor during the rainy season reached the critical values at SF = 0.58. During the dry season, the unsaturated process due to the temperature change generates a safety factor (SF) of more than 1.2. The compilation data produced maps of susceptible landslides and surface flow distribution. Doi: 10.28991/CEJ-2023-09-04-016 Full Text: PDF
Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia Adi Maulana; Miswar Tumpu; Indah Putri Indriani; Iswandi Utama
Civil Engineering Journal Vol 9, No 4 (2023): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-04-011

Abstract

A sedimentological study after the flash floods that hit North Luwu on July 13, 2020, has been carried out on three affected rivers, namely the Masamba River, the Radda River, and the Binuang River. The study aims to determine the sedimentological impact of the 2020 flash flood disaster, including sedimentation rate, annual bedload sediment volume, and total sediments, which will be used as a reference for future mitigation consideration. The study is based on fieldwork for data collection and laboratory analysis. The results of field measurements and laboratory analysis are then processed by calculating the sedimentation rate at the annual discharge, the bedload sediment volume, and the total estimated sediment accumulated by the flash flood. Sedimentation rate analysis was performed using the Ackers-White formula, and flood delineation was processed using HEC-RAS software. The climatological data from the climatology station at Andi Djemma Airport were used to calculate the river discharge. It is estimated that the volume of bedload sediment in the Binuang River is 16,194,168 m3/year, that of the Masamba River is 7,852,061 m3/year, and that of the Radda River is 4,003,011 m3/year. The volume of sediment brought by flash flood sedimentation in the Radda River is 9,141,608.39 m3, while that in the Masamba River is 55,131,761.29 m3, and that in the Binuang River is 136,838,603.61 m3. The total estimated sedimentation generated by the flash flood on the three rivers on July 13, 2020, is 222,476,966 m3. Based on the study, zonation for vulnerability levels is designed for a future mitigation scheme. The zonation can be classified into three zones: 1) the highly affected zone; 2) the moderately affected zone; and 3) the least affected zone, with special purposes in each zone. It is strongly recommended that future disaster settlement and infrastructure reconstruction policies be based on this zone to reduce disaster risk. Doi: 10.28991/CEJ-2023-09-04-011 Full Text: PDF
Recycling of Basalt and Limestone Cutting Dust in Concrete Mix Design Mohammad T. Awwad; Ashraf Shaqadan; Jamal Al-Adwan; Faroq Maraqa
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-010

Abstract

Objectives: The goal is to integrate stone cutting waste into the concrete manufacturing industry to reduce environmental degradation. Methods/Analysis: Two types of stone cutting waste (Basalt and limestone) were separately collected from local facilities. An experimental program was conducted to prepare concrete mixes with 10%, 20%, 30%, and 40% replacement of sand by the two types of stone powder. Physical and chemical quality testing was carried out on the water, aggregates, and cement used in the concrete mix. The experiment compared a standard concrete mix (0% replacement) consisting of 6 cylinders and 6 cubes with a mix of 24 cylinders and 24 cubes after 7 days and 28 days. Results: Compression, tension, and stress tests were performed on the produced specimens. Regarding basalt replacement, a 10% replacement showed a higher impact on compressive strength and tension. For limestone, the 10% and 40% replacement fractions exhibited an insignificant reduction in compressive strength, indicating that a 40% replacement of sand with limestone dust is practical for most applications. Replacing sand with stone cutting waste in concrete can bring several benefits to the environment and enhance project feasibility. Even a small fraction of replacement can improve concrete properties. Novelty:Protect natural sand mining causes damage to ecosystems, leading to erosion and loss of biodiversity. Doi: 10.28991/CEJ-2023-09-05-010 Full Text: PDF
Fire Resistance Analysis of Two-Way Reinforced Concrete Slabs Fidan Salihu; Zijadin Guri; Meri Cvetkovska; Fatos Pllana
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-05

Abstract

This paper presents a fire resistance analysis of two-way reinforced concrete (RC) slabs. The study analyzes the effect of specific parameters—concrete cover thickness, span, and support conditions—on the fire resistance of the slabs. To that end, the slabs were exposed to Standard Fire ISO 834, and the 3D nonlinear numerical analyses were conducted in SAFIR2016. The results of the numerical analyses were evaluated against experimental results reported in the literature. The agreement between the two sets of results was satisfactory throughout the fire test. Nonetheless, to verify the obtained numerical results, all testing-related parameters must comply with the numerical simulation results. This comparison demonstrated the usefulness of numerical simulations in predicting the behavior of structures in fire conditions. In addition to the nonlinear numerical analysis, the fire resistance was calculated using the simplified method and tabulated data described in Eurocode 2 (Part 1.2) to assess the accuracy and reliability of fire safety regulations in the design of two-way slabs and identify significant differences between the design code and numerical analysis. The comparison showed that SAFIR2016 provides more accurate results by considering additional factors, such as tensile membrane forces, which increase the fire resistance of two-way slabs. According to the load-bearing criteria, the two-way slabs have high fire resistance, considerably higher than prescribed in the fire safety regulations, which ignore the positive effect of tensile membrane forces. According to the numerical analysis, the upper reinforcement in the compression areas of the slab's span was considered, which increased the fire resistance of the slabs. In contrast, according to the design codes, the contribution of this reinforcement is neglected. It was indicated that the increased concrete cover improves the fire resistance of the slabs. The vertical displacements increase by increasing the slab span, but according to the load-bearing criteria, all the slabs show fire resistance of over ten hours. In terms of bearing capacity, slabs with various support conditions show fire resistance of longer than ten hours. In terms of deflections, the supporting conditions of the slabs have a significant influence on their behavior. This study provides valuable insights into the fire resistance of two-way RC slabs and highlights the importance of considering specific parameters in the analysis. Doi: 10.28991/CEJ-2023-09-05-05 Full Text: PDF
The Behavior of Dredged Soil-Shredded Rubber Embankment Stabilized with Natural Minerals as a Road Foundation Layer Komang A. Utama; Tri Harianto; A. B. Muhiddin; Ardy Arsyad
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-016

Abstract

Recently, geotechnical studies have been conducted more progressively to utilize dredged soil. The inclusion of shredded rubber (SR) and natural minerals (NM) to stabilize dredged soil (DS) has become an exciting issue in the geotechnical field. This technique can be a promising environmental innovation for the future. This study aimed to investigate the unconfined compressive strength (UCS), California bearing ratio (CBR), and embankment performance under the strip footing test. The UCS sample was prepared using shredded rubber with a proportion of 2% and 3% and natural minerals with a proportion of 3%, 6%, 9%, and 12% from the dry weight of the soil. Whereas for the CBR samples (both in un-soaked and soaked conditions) were also prepared with a proportion of 2% and 3% shredded rubber and 6% and 9% natural minerals from the dry weight of the soil as well. The strip footing test was conducted in small-scale laboratory tests to evaluate the performance of stabilized dredged soil embankments. The applied load test was gradually increased until the embankment collapsed. The results showed that adding shredded rubber and natural minerals could increase the UCS value by 3–4 times and the CBR value by 2–3 times. Furthermore, 84% and 116% efficient results were obtained in the strip footing test for the 7 and 14 days of curing, respectively. Therefore, the utilization of dredged soil stabilized with SR and NM can be considered for use as a road foundation layer. Doi: 10.28991/CEJ-2023-09-05-016 Full Text: PDF
Evaluating Surface Water Quality Using Indexes of Water Quality and Plankton Diversity Thanh Giao Nguyen; Nhien Thi Hong Huynh
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-011

Abstract

The study aimed to assess the relationship between surface water quality and the diversity of planktonic communities in An Giang province, Vietnam. The national technical regulations on surface water quality, the water quality index (WQI), and the Shannon-Wiener diversity index (H') were applied to evaluate water quality. The considerable influence of water quality parameters on the dominant plankton was determined by canonical correspondence analysis (CCA) and similarity percentage analysis (SIMPER). The results showed that water quality was contaminated by organic matter, total suspended solids (TSS), and microorganisms. WQI values classified water quality as ranging from bad to good. The species composition of phytoplankton was dominated by two phyla, Chlorophyta and Bacillariophyta, and that of zooplankton was the Rotifera group. SIMPER analysis identified phytoplankton species with dominant density, including Melosira granulata, Pediastrum duplex, Anabaena sp., and Lyngbya circumcreta. Microcyclops varicans, Filinia longiseta, Trichocerca pusilla, Copepoda nauplius, Brachionus caudatus, and Polyarthra vulgarisdominated the density of zooplankton. Temperature, pH, TSS, ammonium, orthophosphate, and coliform considerably influence the dominant species composition of plankton. However, the indicators of diversity and composition of plankton were unable to completely reflect water quality. These findings could contribute to the indicator selection in developing the monitoring water quality programs. Doi: 10.28991/CEJ-2023-09-05-011 Full Text: PDF
Indoor Climate Prediction Using Attention-Based Sequence-to-Sequence Neural Network Karli Eka Setiawan; Gregorius N. Elwirehardja; Bens Pardamean
Civil Engineering Journal Vol 9, No 5 (2023): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-05-06

Abstract

The Solar Dryer Dome (SDD), a solar-powered agronomic facility for drying, retaining, and processing comestible commodities, needs smart systems for optimizing its energy consumption. Therefore, indoor condition variables such as temperature and relative humidity need to be forecasted so that actuators can be scheduled, as the largest energy usage originates from actuator activities such as heaters for increasing indoor temperature and dehumidifiers for maintaining optimal indoor humidity. To build such forecasting systems, prediction models based on deep learning for sequence-to-sequence cases were developed in this research, which may bring future benefits for assisting the SDDs and greenhouses in reducing energy consumption. This research experimented with the complex publicly available indoor climate dataset, the Room Climate dataset, which can be represented as environmental conditions inside an SDD. The main contribution of this research was the implementation of the Luong attention mechanism, which is commonly applied in Natural Language Processing (NLP) research, in time series prediction research by proposing two models with the Luong attention-based sequence-to-sequence (seq2seq) architecture with GRU and LSTM as encoder and decoder layers. The proposed models outperformed the adapted LSTM and GRU baseline models. The implementation of Luong attention had been proven capable of increasing the accuracy of the seq2seq LSTM model by reducing its test MAE by 0.00847 and RMSE by 0.00962 on average for predicting indoor temperature, as well as decreasing 0.068046 MAE and 0.095535 RMSE for predicting indoor humidity. The application of Luong's attention also improved the accuracy of the seq2seq GRU model by reducing the error by 0.01163 in MAE and 0.021996 in RMSE for indoor humidity. However, the implementation of Luong attention in seq2seq GRU for predicting indoor temperature showed inconsistent results by reducing approximately 0.003193 MAE and increasing roughly 0.01049 RMSE. Doi: 10.28991/CEJ-2023-09-05-06 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue