cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Effective Stiffness and Damping Analysis of Steel Damper to Lateral Cyclic Loading Bastian A. Ampangallo; Herman Parung; Rita Irmawaty; Arwin Amiruddin
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-017

Abstract

Steel dampers are components used in building structures to reduce vibration and energy generated by dynamic loads such as earthquakes. Several factors affect the effectiveness of steel dampers in reducing energy, including the cross-sectional area, mass distribution, cross-sectional geometry, and material stiffness. The cross-sectional geometry or shape of the steel damper can affect how energy is absorbed and dissipated in the structural system. Cross sections with different geometric variations can have different mechanical responses to dynamic loads. This study aims to analyze which type of steel damper is effective in terms of stiffness and damping capacity against lateral cyclic loads. The steel damper cross-sectional variations used are slit steel dampers (SSDs), tapered steel dampers (TSDs), and oval steel dampers (OSDs). Cyclic testing of the dampers used displacement control with the same target deviation for all three damper types. The results showed that the stress and strain distributions of the oval steel damper were more even than those of the other two models. The variations in the energy dissipation capacities of the three cross-section variations are relatively the same. However, the slit steel damper type has the best stiffness compared to the other two types. This research is ultimately expected to influence the science of the structure of a building in preventing and anticipating earthquakes or other disasters. Doi: 10.28991/CEJ-2024-010-07-017 Full Text: PDF
Assessing Air Quality Using Multivariate Statistical Approaches Nguyen Quoc Pham; Giao Thanh Nguyen
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-012

Abstract

The purpose of the current study was to evaluate air quality in Dong Thap province, Vietnam. The air quality data was collected during 2019–2020, representing the time of pre- and mid-COVID-19. Twenty-seven air quality samples (in the areas of urban, residential-administrative, hospital-schools, and industry-craft village areas) were used for the evaluation. Air quality was evaluated using national technical regulations on air quality, including QCVN 26:2010/BTNMT and QCVN 05:2013/BTNMT. The difference of mean air quality between the areas was examined using a one-way ANOVA followed by the Duncan test at a significant level of 5%. The relationship between air quality parameters and microclimate factors was tested using Pearson correlation. Principal component analysis (PCA) was utilized to identify critical variables and potential sources of air variation. Cluster analysis (CA) was applied to group similar air quality sites, thus recommending air monitoring site selection. The results show that the air quality in the study area is not polluted. The concentrations of noise, TSP, SO2, and NO2in the mid-COVID-19 pandemic were significantly lower than those in the pre-COVID-19 pandemic due to the social distancing policy. There was a close correlation among air quality parameters, except for air humidity. PCA identified two to four potential sources of air variation, explaining 84.3%, 100%, 100% and 89.7% of the total air quality variance at urban, residential–administrative, hospital-schools, and industry-craft villages, respectively. CA divided the 27 sampling sites into eight groups by the differences, mainly in humidity, wind speed noise, TSP, and CO. Eight sampling sites could be potentially reduced from the current monitoring program for representativeness and cost-effectiveness purposes. All air parameters in the current study are significant for monitoring, and the potential sources of air quality variation are traffic activities, industrial production, craft village activities, and daily life using fuels in residential areas. The results of the current study provide useful information for air quality monitoring and management. Future monitoring programs should include toxic air pollutants in air quality monitoring programs. Doi: 10.28991/CEJ-2024-010-02-012 Full Text: PDF
Development of a Framework for Risk-Based Integrated Safety Audit to Enhance Construction Safety Performance Danang B. Nugroho; Yusuf Latief; Mochamad A. Wibowo; Rosmariani Arifuddin; Fatma Lestari; Muhammad N. Akram
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-08

Abstract

Presently, there is a notable surge in infrastructure development, leading to a heightened occurrence of accidents within the construction sector. This trend has positioned the construction industry as one of the most accident-prone areas compared to other sectors. This suggests that the current construction safety audit procedures have not proven effective in preventing accidents. Typically, audits are conducted primarily during the construction phase, with infrequent assessments during the design phase. According to the Szymberski theory, actions taken during the design phase significantly influence the occurrence of accidents more than those taken during construction. Previous research has discussed a lot about safety management systems. However, it has not discussed how to assure the quality of its implementation. Considering this, the research aims to (a) identify the processes, elements, activities, sub-elements, objectives, criteria, and risks associated with construction safety audits and (b) formulate an integrated, risk-based audit process covering both the design and construction phases. This qualitative research employed the Delphi method to gather insights from construction safety experts, and the developed audit process utilized a risk management approach. The resulting audit process integrates principles from ISO 19011:2018 and Regulation of the Minister of Public Works and Housing Number 10 of 2021. The findings revealed 34 activities in audit program management, 34 activities in audit implementation, and 32 sub-elements in audit criteria. These components are incorporated into a comprehensive construction safety audit framework, organizing audit processes, activities, and criteria. This framework underscores that improving construction safety performance is not solely confined to the construction phase but extends to the design phase as well. The audit results serve as a foundation for continuous improvement, aiding in enhancing safety performance and preventing accidents within the construction industry. Doi: 10.28991/CEJ-2024-010-03-08 Full Text: PDF
Cold-formed Steel-Concrete Composite Beams with Back-to-Back Channel Sections in Bending Andrea Rajić; Ivan Lukačević; Davor Skejić; Viorel Ungureanu
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-01

Abstract

Steel-concrete composite structures are very attractive because of their characteristics, which can be emphasised by using cold-formed steel instead of hot-rolled ones. This paper presents possible analytical approaches and a parametric finite element study of cold-formed steel-concrete composite beams in bending. Analysed beams are formed of back-to-back cold-formed steel channels and concrete slabs connected by demountable shear connectors. A solid concrete slab on a profiled metal sheet analysed. Also, the study investigates the influence of corrugated web between the back-to-back channels of different thicknesses. In the case of a corrugated web, the distance between the shear connectors is increased. Furthermore, different degrees of shear connection, shear connector quality, and their arrangements are considered. An analytical study is based on full and partial shear connection assumptions and non-linear bending resistance. It is shown that the steel channel thickness and degree of shear connection significantly influence the beam bending capacity as well as concrete slab configurations. Conversely, a discrete connection between steel elements has a minor effect. A comparison of the maximum obtained bending capacities in FE analyses is in good agreement with analytical approaches for full and partial shear connections. Doi: 10.28991/CEJ-2023-09-10-01 Full Text: PDF
Stress Concentration Factors in KT-Joints Subjected to Complex Bending Loads Using Artificial Neural Networks Mohsin Iqbal; Saravanan Karuppanan; Veeradasan Perumal; Mark Ovinis; Afzal Khan; Muhammad Faizan
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-04

Abstract

Fatigue analysis of tubular joints based on peak stress concentration factor (SCF) is critical for offshore structures as it determines the fatigue life of the joint and possibly the overall structure. It is known that peak SCF occurs at the crown position for in-plane bending (IPB) and at the saddle position for out-of-plane bending (OPB). Tubular joints of offshore structures are under multiplanar bending, comprising IPB and OPB. When a joint is subjected to IPB and OPB loads simultaneously, the peak SCF occurs somewhere between the crown and the saddle. However, existing equations estimate SCF at the crown and saddle only when a joint is subjected to IPB or OPB. It was found that the position and magnitude of peak SCF under simultaneous IPB and OPB depend on the relative magnitudes of these uniplanar load components. The crown and saddle position SCF can be substantially lower than the cumulative peak SCF. Empirical models are proposed for computing peak SCF for KT-joints subjected to multiplanar bending. These models were developed through regression analysis using artificial neural networks (ANN). The ANN training data was generated through 3716 ANSYS finite element simulations. The empirical model was validated using models available in the literature and can determine peak SCF with an error of less than 1.5%. Doi: 10.28991/CEJ-2024-010-04-04 Full Text: PDF
Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review Ayedh Mohammad Alhajiri; Mohammad Nadeem Akhtar
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-017

Abstract

This review article addresses the problems associated with the carbon footprint of the cement industry. The PRISMA framework methodology was for data extraction from published studies. In-depth research has been done in the literature on using silica fume as a cement replacement in concrete production, considering environmental, engineering, and economic (EEE) factors. The strength, durability, and economic parameters results revealed a positive variation of up to 5–20% substitution of silica fume. However, most past studies reported the threshold at a 10% replacement ratio. A novel benefit-cost ratio analysis was also done in this review study. The benefit-cost ratio analysis reveals the economically beneficial effects that can be achieved in sustainable silica fume-based concrete with a (5–20%) silica fume combination. The benefit-cost ratio showed positive effects, up to 20% cement replacement with silica fume. Hence, the higher cement replacement with silica fume is also beneficial in terms of the benefit-cost ratio. Further research has been proposed based on the findings of this review study. Doi: 10.28991/CEJ-2023-09-10-017 Full Text: PDF
Evaluating Recycled PET as an Alternative Material for the Construction Sector Towards Sustainability Omar Albatayneh; Mohammad Nadeem Akhtar
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-020

Abstract

Addressing the environmental threat of Polyethylene Terephthalate (PET) waste is critical for sustainable development. Despite PET's prevalence in everyday products, its improper disposal endangers environmental health. This study targets a pivotal gap in current research. PET waste's potential as a sustainable building material will be thoroughly evaluated, focusing on whether recycling PET waste is feasible. In the construction industry, it can be a substitute for natural sand and an additive in cement. This study contributes to a dual-purpose solution: mitigating environmental pollution and innovating in construction material science. The systematic literature review (SLR) delves into existing studies, focusing on PET's impact on concrete properties when substituting natural sand at ratios of 5% to 20% and as a cement additive at 0.5% to 2% by weight. The findings revealed that up to a 10% PET replacement enhances compressive strength, highlighting a sustainable pathway for construction practices. However, replacements above 10% show a reduction in strength, indicating an optimal substitution threshold. Moreover, incorporating PET additives at 1% by cement weight optimizes flexural strength, underscoring the material's viability in enhancing structural integrity. This study sheds light on PET waste's application in reducing environmental impact and proposes a viable, eco-friendly alternative for construction materials. The recommendation for further research underscores the necessity to refine PET's application in construction, aiming to bridge the knowledge gap and encourage sustainable future innovations. Doi: 10.28991/CEJ-2024-010-04-020 Full Text: PDF
Modeling and Optimizing Wastewater Stabilization Ponds for Domestic Wastewater Treatment Hafiz Qasim Ali; Osman Üçüncü
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-014

Abstract

In Wastewater Stabilization Ponds (WSPs), baffle walls (BWs) have the dual benefit of reducing area requirements and increasing contaminant removal efficiency up to a certain threshold. However, this advantage is mitigated by the increased demand for construction materials, highlighting the need for optimization. Effectively optimizing WSPs to suit diverse climatic regions can substantially alleviate nationwide wastewater treatment challenges. This study focuses on optimizing WSPs across seven distinct climatic regions in Turkey. In the initial phase, a comprehensive analysis was conducted using design spreadsheets for the WSPs to determine the best configuration based on traditional methodology (TM). The results demonstrated a significant decrease in WSPs area and hydraulic retention time (RT), validating the effectiveness of BWs provision. However, this approach requires additional time and effort. Subsequently, mathematical modeling (MM) was used to further reduce the time required for the optimization process. Using the interior-point algorithm in MATLAB and the generalized reduced gradient (GRG) algorithm in MS Excel Solver, both algorithms within MM effectively decreased the WSPs area and RTby approximately 10%, while decreasing the required concrete volume by approximately 5% compared with TM. As other algorithms may yield better optimization, they can be investigated by developing specialized software for WSPs. Doi: 10.28991/CEJ-2023-09-11-014 Full Text: PDF
Retrofitting Bolted Flange Plate (BFP) Connections Using Haunches and Extended End-Plates Budi Suswanto; Fikri Ghifari; Yuyun Tajunnisa; Data Iranata
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-03

Abstract

In Indonesia, one of the most common forms of connection is the Bolted Flange Plate (BFP) moment connection. Nevertheless, their current setups do not satisfy the strict requirements outlined in AISC 358-22. Therefore, this study uses advanced sub-assemblage numerical modeling simulations using ANSYS software to propose a novel way to integrate a half WF extended end-plate connection and trapezoidal haunch in order to fortify BFP moment connections, which does not meet the requirement required by AISC 358-22. Methodologically, the research entails comprehensive modeling and analysis of the proposed retrofit scheme. Six distinct connection models were scrutinized: the BFP-UR representing the existing connection extracted from a structure in Surabaya; the BFP-R4E and BFP-R4ES models, embodying connection retrofits with a half WF extended end-plate; and the BFP-RTR and BFP-RSTR models, embodying connection retrofits with a trapezoidal haunch. Additionally, the BFP-RTRE model integrates both an extended end plate and a trapezoidal haunch in the retrofit scheme. The analytical findings unveil that the proposed strengthening paradigm manifests heightened and superior rotational moment characteristics relative to the pre-reinforcement configuration, albeit encountering stiffness degradation attributable to buckling effects on the main beam. Notably, the analysis indicates that degradation ensues when rotational displacement exceeds 4%, with only the BFP-RTR and BFP-RSTR models exhibiting degradation at a 3% rotation threshold. Crucially, the connections demonstrate the capability to withstand 80% of the beam’s plastic moment under a 4% rotational displacement, thereby aligning with the stringent requisites delineated in AISC 341-22. Doi: 10.28991/CEJ-2024-010-08-03 Full Text: PDF
GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior Hebah M. Al-Jabali; Ahmed A. El-Latief; Mohamed Salah Ezz; Shady Khairy; Amr A. Nada
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-09

Abstract

Geopolymers and antacid-enacted fasteners have accumulated critical interest as promising development and fixing materials because of their exceptional properties. Also, they bring about less contamination contrasted with regular concrete cements. Geopolymers address a clever class of suggested restricting materials blended through the basic enactment of bountiful aluminosilicate materials. The usage of geopolymer materials from side effects offers a critical decrease in carbon impression and yields positive natural effects. Geopolymer is progressively recognized as a plausible substitute for OPC concrete. In this review, sodium-based antacid activators, especially sodium metasilicate (Na2SiO3), were used for different blend extents. The boundaries researched included NaOH arrangements with a grouping of 8 M, alongside a Na2SiO3/NaOH proportion of 1. This paper evaluates the fundamental characteristics of geopolymer cement beams, employing red mud and GGBFS in powdered form as complete replacements for traditional concrete. Six bar specimens are tested under a two-point static loading condition, all cured at room temperature under ambient conditions. Of the six beams, three were exposed to flexural conduct testing with a molarity of 8 M, while the excess three beams were tried for shear conduct. The outcomes of testing geopolymer beams subjected to shear and bending loads indicated that the beams incorporating aluminum slag performed better than those incorporating blast furnace slag. Both types also demonstrated promising results compared to beams incorporating OPC, highlighting their potential environmental benefits compared to cement use. Doi: 10.28991/CEJ-2024-010-05-09 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol. 10 No. 7 (2024): July Vol 10, No 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue