cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Experimental Study on the Effect of Flow Velocity and Slope on Stream Bank Stability (Part I) Jawad Kadhim; Mohanned Q. Waheed; Haitham A. Hussein; Saad F. A. Al-Wakel
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-013

Abstract

The erosion of riverbanks is a significant and capricious national concern. The Al Muwahada channel in Iraq experiences instability in its banks, resulting in failure, retreat, and morphological alterations. These issues are mostly caused by factors such as the velocity of the flow, the angle of the slope, and type of soil. This study investigated the behavior of canal bank soil in response to erosion and variations in slope angle. Therefore, a physical model of a case study was established in the laboratory. Additionally, a slope angle of 26˚ is being utilized, which has not been previously studied in the laboratory. This angle will be tested with five different velocity values: 0.101 m/s, 0.116 m/s, 0.12 m/s, 0.13 m/s, and 0.135 m/s. The bank's deformation was measured for a period of 12 hours, which was divided into 4 equal intervals for each velocity. The study determined that a riverbank with a slope of 26˚ is more resistant to erosion when the velocity of the water is below 0.12 m/s. Velocities equal to or greater than 0.12 m/s have a substantial impact on the erosion of the riverbed. According to this study, a velocity of 0.12 m/s or higher leads to increased erosion of the riverbank. This is equivalent to a velocity of 0.804 m/s in the prototype channel. The section of the riverbank that has suffered the greatest damage due to erosion is the upper two-thirds. The used methodology supports global efforts to increase information about the behavior of river banks with unexplored rivers that have different flow velocities and bank slope angles. Doi: 10.28991/CEJ-2024-010-08-013 Full Text: PDF
Pulsed-Bed Column Adsorption for Triclosan Removal Using Macadamia Nut Shell Activated Carbon Jareeya Yimrattanabovorn; Mananya Phalaiphai; Siriwan Nawong
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-019

Abstract

Triclosan (TCS), a common antibacterial agent found in numerous personal care products, has been detected in wastewater and surface water and is now of significant environmental concern due to its health impacts. To mitigate this issue, various treatment methods have been explored. This study investigated the efficacy of Macadamia nut shell activated carbon (MAC) as an economical adsorbent for triclosan removal. A pulsed-bed column adsorption technique was applied to enhance adsorption capacity and prolong the operational lifespan of the column. Batch experiments were conducted to explore various parameters and adsorption capacity. Column experiments were carried out to investigate breakthrough curves and various associated parameters. In batch experiments, MAC exhibited a high TCS adsorption capacity of 119.05 mg/g, and optimal adsorption conditions were determined. Adsorption kinetics followed the pseudo-second-order model, and equilibrium data were well-fitted by both the Langmuir and Freundlich isotherm models. A pulsed-bed column adsorption showed superior performance compared to a fixed-bed column under specific conditions (flow rate: 10 mL/min, TCS initial concentration: 60 mg/L, bed column height: 10 cm) and removal bed height of only 6 cm, successfully enhancing TCS adsorption capacity to 53.40 mg/g and extending the operational lifespan of the column to 5,280 minutes. Adapting pulsed-bed columns for TCS removal from wastewater in the personal care product industry led to the extension of column life with increased adsorption capacity and minimized the use of adsorbents as a practical and environmentally friendly method. Doi: 10.28991/CEJ-2024-010-05-019 Full Text: PDF
An Experimental Study of Strength Increase in Masonry Wall Reinforced by One-sided Khorasan Mortar with Steel Mesh Volkan Öztaş; Necdet Torunbalcı
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-019

Abstract

The strengthening of masonry structures is of paramount importance due to their inherent lack of tensile elements, rendering them susceptible to tensile stresses induced by horizontal loads and the resultant substantial damage. Consequently, this study aims to develop a reinforcement system for the strengthening of historical masonry structures by using mortars devoid of cement and modern pozzolan. Experiments were conducted on masonry walls unreinforced and reinforced by a one-sided Khorasan mortar with steel mesh. Initially, six masonry brick walls constructed using Khorasan lime mortar were prepared. Subsequently, after a waiting period of six months, Khorasan plaster mortar, reinforced with steel mesh, was applied to three masonry walls on one side. Following an 18-month waiting period, all samples were subjected to testing in an experimental setup designed and manufactured for this purpose. The wall reinforcement resulted in a significant increase, with the average peak load by 215.73%, and the average displacement by 48.82%. The experimental shear force on unreinforced walls was found to be 41.23% lower than Eurocode-6 and 1.41% lower than TBDY-2018. In the case of one-sided reinforced walls, the experimental shear force was 9.94% lower than Eurocode-6 and 6.16% lower than TBDY-2018. This form of strengthening not only obviates the use of potentially damaging cement in historical buildings but also extends the lifespan of the reinforced structures. Doi: 10.28991/CEJ-2023-09-12-019 Full Text: PDF
BIM Maintenance System with IoT Integration: Enhancing Building Performance and Facility Management Ahmed Ehab; Mazkour A. Mahdi; Arfa El-Helloty
Civil Engineering Journal Vol 10, No 6 (2024): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-06-015

Abstract

The rapid growth of technology worldwide in different ways drives the construction sector to take the same path. Smart cities, Digital Twins, Building Information Modeling (BIM), and the Internet of Things (IoT) are the trends in this way today. Also, integrating Building Information Modeling (BIM) and Internet of Things (IoT) technologies has revolutionized how buildings are designed, constructed, maintained, and managed. On the other hand, the complexity, high cost, need for expertise, and other things make the maintenance process and facility management by human inspections, commercial software, and different tools not suitable for the growth of the technology. This paper presents a proposal for a workflow of integration between BIM, and an algorithm of Maintenance System with IoT and highlights its potential to enhance building performance and facility management. The paper explores this innovative system's underlying principles, benefits, challenges, and implementation strategies. Furthermore, it discusses the implications of BIM, and the proposed algorithm of Maintenance System with IoT integration on various stakeholders, including building owners, facility managers, and occupants by using a case study. The findings collected by a questionnaire for some experts emphasize the importance of adopting this integrated approach to optimize building operations, improve maintenance practices, and create sustainable and intelligent built environments. Doi: 10.28991/CEJ-2024-010-06-015 Full Text: PDF
Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements Omar Ben Charhi; Khadija Baba
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-06

Abstract

This study meticulously examines the impact of temperature variations on the viscoelastic characteristics of flexible pavements composed of mineral aggregates and bituminous binders. The primary objective is to understand how temperature fluctuations affect the structure and durability of these pavements, designed to withstand traffic loads while absorbing stresses induced by weather conditions. The methodology involves a thorough analysis of a range of temperatures from T1 to T4, assessing their effects on road rutting and the longevity of pavement infrastructure. Through a detailed analytical approach, the research investigates the viscoelastic behavior of bituminous mixes, which display viscous and elastic properties that change with temperature. The findings reveal significant correlations between temperature variations and the performance of flexible pavements, offering insights into their structural resilience and durability under different climatic conditions. This research introduces a novel approach to managing flexible pavement infrastructure by enhancing our understanding of the temperature-induced viscoelastic response. The improvement lies in the precise quantification of temperature impacts, which can inform better maintenance and design strategies for flexible pavements. Ultimately, this leads to more resilient and long-lasting road surfaces, addressing the critical need for durable infrastructure in changing weather patterns. Doi: 10.28991/CEJ-2024-010-07-06 Full Text: PDF
Development of a Cross-Asset Model for the Maintenance of Road and Water Pipe Assets using AHP Method J. A. N. N. Jayakody; M. C. M. Nasvi; D. J. Robert; S. K. Navaratnarajah; L. C. Kurukulasuriya; F. Giustozzi; C. Gunasekara; S. Setunge
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-01

Abstract

Roads and water pipe assets undergo various deterioration processes due to the high demand for their services. Maintenance of these assets is often planned as individual assets, and the interdependency among different assets is neglected. An integrated framework for cross-asset maintenance is required for optimum utilization of the available funds for asset maintenance. To date, there are very few studies focusing on the use of the analytical hierarchy process (AHP) for cross-asset maintenance of roads and water pipe assets. Therefore, this research aims to develop an integrated fund allocation model for the maintenance of road and water pipe assets. A model was developed using AHP analysis based on expert opinions captured through a questionnaire in order to obtain optimum maintenance fund allocation for the cross-assets, roads, and water pipes. Then, a case study corridor segment with the considered cross-assets was selected, and a trade-off analysis was conducted for the intervention alternatives considering different levels of service (LOS) of the asset elements. The results of the trade-off analysis can be used to identify the optimum intervention alternative that satisfies the budget requirement and results in the maximum benefit. Overall, asset managers can use the approach presented in the present study to develop a cross-asset fund allocation model when multiple assets are involved in maintenance. Doi: 10.28991/CEJ-2024-010-02-01 Full Text: PDF
Behavior of Axially Loaded Concrete Columns Reinforced with Steel Tubes Infilled with Cementitious Grouting Material Ahlam A. Abbood; Nazar Oukaili
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-017

Abstract

The paper presents a novel method of reinforcing concrete columns using small-diameter steel tubes instead of traditional steel bars. The researchers conducted experimental investigations on twelve mid-scale circular concrete column specimens, which were divided into two groups consisting of six specimens each: short and long columns. Two of the specimens in each group were reinforced with steel bars, while the remaining four were reinforced with steel tubes filled with cementitious grouting material. The study proposed two concepts for cementitious grouted steel-tube reinforcement. The first concept utilized steel tubes with equivalent net areas to the steel bar areas used in the reference column, while the second concept used steel-tube reinforcement with the same diameter as the steel bars in the reference column. Nonlinear Finite Element (FE) analyses were conducted on experimental specimens using ABAQUS software. The results showed that using steel tubes with an area equivalent to that of steel bars instead of conventional columns increased the bearing capacity of reinforced concrete columns by 17%. Moreover, using steel tubes whose area matched 30% of the steel bar area achieved a bearing capacity of about 81% of the conventional concrete columns. The experimental and FE analysis findings indicate that this methodology can increase the bearing capacity of reinforced concrete columns when compared to traditional methods. The axial load-axial displacement curves, axial load-axial strain curves, and failure load of the FE model all demonstrated good convergence with the experimental data. Doi: 10.28991/CEJ-2024-010-02-017 Full Text: PDF
The Effectiveness of the Procurement at the Construction Services Selection Implementation Center . Sofian; H. Parung; S. Burhanuddin; R. Arifuddin
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-013

Abstract

The construction industry still faces various challenges in some developing countries, and one of the problems is the procurement of goods and services. The allocation of public procurement funds is significant to the national GDP. It is essential to conduct comprehensive research on government procurement in the construction industry in Indonesia due to the rapid growth of the construction industry in the last decade. This research focuses on the procurement of construction goods and services in the Ministry of Public Works and Housing by looking at the perception of the government as the project owner. This research aims to identify a model of critical success factors to improve public procurement performance in the construction industry from the government's perspective. The research method includes two stages, namely, the development of critical success, which consists of crucial factors and indicators that affect the performance of public procurement in the construction industry. It is a literature study of relevant previous research results from various countries that affect these critical success factors. Then, the second stage is a survey of experts' perceptions through questionnaires. The questionnaire data analysis used SEM-PLS software to quantify the relationship model of critical success factors to improve the performance of government procurement of goods and services in the construction industry. Data processing results include: business process factors affect 97.1%, regulatory factors affect 90.1%, information system factors affect 63.1%, human resource factors affect 56.1%, organizational factors affect 46.1%, and monitoring and evaluation factors affect 38%. Doi: 10.28991/CEJ-2024-010-03-013 Full Text: PDF
Ventilation Performance of Air Duct in Double Loaded Corridor Building: A Case Study Muhammad S. Ulum; Wenny Arminda; Maqbul Kamaruddin; Widi Dwi Satria
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-06

Abstract

Buildings with double-loaded corridor types are often found in Indonesia and generally function as offices or lecture rooms. This type of building is popular because of its efficient circulation path to accommodate the movement of occupants. However, a wall separating the room from the corridor makes it impossible to put windows to implement a cross-ventilation system due to acoustic problems. Hence, to achieve indoor thermal comfort, this type of building relies on using an air conditioning (AC) system. However, with the WHO's call to reduce the use of AC during the COVID-19 pandemic, it is necessary to evaluate cross-ventilation in double-loaded corridor buildings to meet comfort standards while still preventing acoustic problems due to noise from corridors and other spaces. The study proposes a new natural ventilation system using air ducts placed above the corridor ceiling to create cross-ventilation in lecture buildings. The E-ITERA building was chosen as a case study in this research. The building has a glass facade with several small windows that can be opened outside. The corridor of this building is designed with openings at both ends, allowing for direct connection to the outside air. The walls facing the passage have a single door and four small ventilations on the aisle's upper side. Simulations were carried out in two classrooms on the 3rd floor using CFD (Computational Fluid Dynamics) software. Experiments were carried out to change the size of the air duct and the size of the ventilation on the wall that leads to the corridor. The results showed that the air duct was able to create cross-ventilation. Ventilation performance is improved when the WWR air duct is the same as the WWR window. The highest air velocity in the centre of the room is 0.6 m/s. Doi: 10.28991/CEJ-2023-09-10-06 Full Text: PDF
Unveiling Effectiveness of Lean Construction Practices: A Comprehensive Study through Surveys and Case Studies Mughees Aslam; Edmund Baffoe-Twum; Muhammad Ahmed; Aman Ulhaq
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-09

Abstract

Construction projects frequently encounter challenges such as stagnant productivity, excessive waste, cost overruns, and delays, contributing to sustainability issues. In response to these issues, Lean Construction (LC) has emerged as a methodology aimed at eradicating inefficiencies and wasteful practices. However, the construction industry has been slow to embrace LC, primarily due to a lack of comprehensive evaluations regarding its real-world effectiveness. This study seeks to thoroughly assess the effectiveness of LC when implemented in construction projects in Pakistan. The research involved conducting a survey among experts in the construction industry, utilizing a comprehensive questionnaire to evaluate the extent of LC adoption and its impact on construction project performance. The collected data underwent rigorous statistical analysis to ascertain the influence of LC practices on project outcomes. To validate the survey results, the study selected five case study projects for in-depth analysis. These case studies assessed how well the projects adhered to LC principles and examined the resulting effects on project delays, cost overruns, quality issues, rework, and health-related concerns. The findings consistently confirmed that a higher level of adherence to LC principles led to significant reductions in project delays, cost overruns, quality issues, and health-related problems. This analysis strongly supports the notion that a more extensive adoption of LC practices results in substantial improvements in project performance. By presenting these compelling results, this study offers valuable insights to the construction industry, providing a clearer path for the effective integration of LC practices. Doi: 10.28991/CEJ-2024-010-04-09 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue