cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Parametric Analysis of Horizontal Static and Dynamic Behavior in Different Types of Masonry Structures Georgios Xekalakis; Dimitris Pitilakis; Giulio Zuccaro; Petros Christou
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-015

Abstract

This article introduces the "Pre-seismic Survey Form for Masonry" (PRISM), a simplified tool for evaluating masonry structures. It aims to be user-friendly for both experienced surveyors and beginners. The primary objective is to develop PRISM as an efficient means of gathering relevant data that influences the diverse behaviors exhibited by masonry structures, covering both structural and non-structural aspects. PRISM's development involves a parametric method for identifying critical parameters by analyzing drift results from the response spectrum and horizontal static analyses. These analyses are performed on common masonry structures in European Mediterranean nations. The study investigates various factors, including facade openings, materials around openings, wall thickness, ground type, ground acceleration (g), and principal structural material. By examining 300 2D models created in SAP2000, correlations in structural responses are established. The findings of the parametric analysis significantly enrich the qualitative and quantitative comprehension of structural responses. This advancement contributes to the contemporary knowledge of prevalent masonry structures within European Mediterranean regions. The PRISM survey form employs a numeric rating scale format. Notably, PRISM enables surveyors to access field results, minimizing reliance on computers quickly. The form's design also ensures accessibility and data reliability, making it universally applicable while maintaining simplicity. Doi: 10.28991/CEJ-2023-09-10-015 Full Text: PDF
Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash Mohammed Ali M. Rihan; Richard O. Onchiri; Naftary Gathimba; Bernadette Sabuni
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-018

Abstract

Portland cement plays a vital role in construction and building projects. However, its manufacturing process releases detrimental pollutants and contributes to climate change. The environmental concerns linked to the manufacturing of conventional Portland cement, such as its high energy demands, raw material consumption, and significant CO2 emissions, have prompted the need to look for alternatives such as geopolymer or green concrete. In addition, indiscriminate disposal of waste might have a detrimental effect on the environment. This paper investigates the mechanical and microstructural properties of geopolymer concrete incorporating fly ash and sugarcane bagasse ash as primary constituents. Sugarcane bagasse ash (SCBA) was employed as a partial substitute for Fly Ash (FA), with varying proportions ranging from 5% to 20% with increments of 5%. Alkaline activators utilized were NaOH (14M) and Na2SiO3, with a ratio of 1.5. Various tests, including the slump test, compressive strength test, splitting tensile strength test, and flexural strength test, were performed. The microstructural characteristics were assessed by scanning electron microscopy (SEM), energy dispersive analysis (EDS), and X-ray diffraction analysis (XRD). The results revealed that adding sugarcane bagasse ash influenced the workability of geopolymer concrete while enhancing its mechanical properties. The research findings have shown that the mixture comprising 5% SCBA has the greatest compressive strength of 64 MPa. Doi: 10.28991/CEJ-2024-010-04-018 Full Text: PDF
Impact of Rear Slope Variation on Rubble Mound Breakwater Stability Under Seismic Loading Morabit, Abdelmajid; El Ghoulbzouri, Abdelouafi
Civil Engineering Journal Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2024-010-08

Abstract

This study aims to enhance the seismic stability of rubble mound breakwaters, crucial maritime structures, by examining how variations in the rear slope angle affect their response to seismic loads. Utilizing the Plaxis 2D software, a finite element method was employed to simulate the behavior of a conventional rubble mound breakwater under different seismic conditions. The analysis considered three different rear slope angles and subjected each to various seismic loads characterized by differing amplitudes and frequencies. Our findings indicate that the rear slope inclination significantly influences the seismic response of the breakwaters, notably affecting the displacements and deformations within the structure. The most optimal angle of inclination was identified, which minimized the seismic-induced deformations, thereby potentially improving the structural integrity and longevity of these maritime defenses. This investigation not only provides valuable insights into the design of more resilient maritime structures but also introduces an approach to optimize breakwater design for better performance under seismic conditions, marking a notable improvement in the field of maritime engineering. Doi: 10.28991/CEJ-SP2024-010-08 Full Text: PDF
The Effect of Shear Stress on Armor Layer Thickness Under Steady Uniform Flow Cahyono Ikhsan
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-012

Abstract

The armor layer is essential for maintaining stability on riverbed surfaces. This layer forms when bedload sediment moves until the bed's surface erodes, resulting in a stable layer that reaches an equilibrium state where no further sediment transport occurs. Therefore, the objective of this study is to investigate the effect of grain size and shear stress on armor layer thickness using evenly mixed sand and gravel with five different grain size variations. The research methodology consists of laboratory experiments and optimization analysis. The main instrument used is a sediment-recirculating flume constructed from plexiglass, measuring 10, 0.60, and 0.45 m in length, width, and height, respectively. Bed slope varies across gradients of 1%, 1.4%, 1.8%, 2.2%, and 2.6%. The constant flow rate is set at capacities of 25 l/s, 30 l/s, 40 l/s, and 45 l/s. The results show the consistent behavior of the channel bed surface under different flow rate variations. Meanwhile, the variables affecting armor layer thickness are the uniformity coefficient (Cu), the difference in shear stress on the bed surface (τo-τc)/τc), beds shear stress, and the critical shear stress of the sediment grain. The primary novelty of this research is a formula to determine armor layer thickness. It showed that both shear stress and the proportion of sand-to-gravel materials play significant roles in the armoring process and subsequent changes in the riverbed. Doi: 10.28991/CEJ-2023-09-11-012 Full Text: PDF
Unveiling the Impact of Psychological Factors on Consumer Purchase Intentions for Overall Sustainable Success in Green Residential Buildings: Using SEM-ANN Analysis Ahmad M. Zamil; Ahmed Farouk Kineber; Mohammad Alhusban
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-07

Abstract

The research problem addressed in this study is the limited understanding of the intricate interactions among emotional, environmental, and psychological factors within organizations and their collective impact on overall sustainable success (OSS). A critical gap exists in the literature, as previous studies often analyze these factors in isolation, leaving an incomplete picture of their interdependence. To fill this gap, this study aims to comprehensively understand the interplay between Psychological Factors (PF) and OSS. The objectives are to identify relevant factors, collect data, and employ a rigorous methodology for analysis. The research methodology involves a three-phase approach: factor identification, data collection, and analysis. This study leverages a unique integration of Structural Equation Modeling (SEM) and Artificial Neural Networks (ANN) to deepen the analysis, revealing intricate relationships among identified factors. The study's findings highlight a robust positive association between PF and OSS, underscoring the significance of prioritizing employees' psychological well-being for enhanced workplace satisfaction and performance. These insights have practical implications for organizational leaders and managers, guiding them to cultivate positive emotional climates, instill environmentally conscious practices, and address negative emotional states within their teams. Doi: 10.28991/CEJ-2024-010-05-07 Full Text: PDF
Managing Green and Sustainable Technologies: Climate-Informed Corrosion Prediction for Steel Structures Mohammad F. Tamimi; Ali Shehadeh; Odey Alshboul; Khaled Amaeyrh; Ghaidaa Taani; Samer Tamimi; Mohammad Faris; Eman Hazaimeh; Amani AL-Zboun; Motasem Nawafleh
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-016

Abstract

The unpredictability of atmospheric circumstances is one of the major elements that contribute to the capability to anticipate the corrosion growth in metal structures over time accurately. Climate shifts can potentially modify the long-term attributes of these factors throughout the operational life of metal structures, both those currently in existence and those newly developed. The impact of climate irregularity on the probabilistic nature of atmospheric variables, which significantly impact corrosion situations, can add intricacy to corrosion predictions in these constructions. This project presents an incorporated framework to quantify the impact of climate alteration on the corrosion rates of steel structures in Jordan. It considers the changes in environmental conditions, specifically temperature, relative humidity, and wind speed, and their impacts on atmospheric corrosion. Global Climate Models are employed to assess the long-term effects of climate transformation on these environmental circumstances. An analytical model for anticipating corrosion rate is integrated with climate transformation models to predict modifications in the corrosion rates of steel parts relative to historical situations. This project also examines the impact of climate transformation on the fluctuations of these climatic parameters and offers a contrast between historical data and projected conditions across the country. The findings indicate a significant increase in corrosion rates across Jordan, which calls for localized green building codes and standards to ensure that future infrastructure is sustainable and capable of withstanding the new climatic norms. This approach addresses the immediate challenges posed by climate change and contributes to the broader goals of sustainable urban development and managing green technology adoption in Jordan. Doi: 10.28991/CEJ-2024-010-08-016 Full Text: PDF
Optimizing Time Performance in Implementing Green Retrofitting on High-Rise Residential by using System Dynamics and M-PERT Albert E. Husin; Riza S. Prawina; Priyawan Priyawan; Rizkiawan Pangestu; Bernadette D. Kussumardianadewi; Lastarida Sinaga; Kristiyanto Kristiyanto
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-07

Abstract

Climate change is a threat and crisis that is engulfing the world today; therefore, the target of Net Zero Emission (NZE) by 2060 should be an obligation for all countries. The greenhouse effect, global warming, destruction of the ozone layer, forest destruction, uncontrolled use of CFCs, and industrial exhaust are factors that cause climate change. The consequences of climate change are dire, resulting in drought, water scarcity, land fires, rising sea levels, flash floods, melting polar ice caps, storms, and a decline in biodiversity. Green buildings (GB) are important in saving energy, water, and other resources by meeting technical construction standards and applying green building principles according to their function and classification at each stage of their implementation. Buildings with measurable performance. Expected to reduce carbon or greenhouse gas emissions. The latest Technical Guidelines for Green Building Performance Assessment Standards were developed through regulations from the Ministry of Public Works and Public Housing (PUPR) No.1 of 2022. The way to improve and find a solution to achieve a Green Building according to these regulations is by applying solar modules as an alternative energy source in the building under study, providing significant added value to the assessment process. This research aims to analyze whether the renewable energy source factor is an influencing factor in the application of the Ministry of PUPR Green Building in High-Rise Residential. This research framework is at least initiated from matters where M-PERT, which is an innovation and the latest method of continuation of the PERT method, is proven to be able to provide an accuracy of planning execution time of 99% or with an error rate of 1%. From the research results with the application of M-PERT, it is proven that it can provide an accuracy of implementation time of 98.93% in the Primary Rating, while in the Intermediate Rating, it can provide an accuracy of implementation time of 99.92% and 98.88% accuracy of implementation time for the Main Rating category. Doi: 10.28991/CEJ-2023-09-12-07 Full Text: PDF
Landslide Susceptibility Assessment in Western External Rif Chain using Machine Learning Methods Marouane Benmakhlouf; Younes El Kharim; Jesus Galindo-Zaldivar; Reda Sahrane
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-018

Abstract

Landslides are a major natural hazard in the mountainous Rif region of Northern Morocco. This study aims to create and compare landslide susceptibility maps in the Western External Rif Chain context using three advanced machine learning models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbors (KNN). The landslide database, created by satellite imagery and field research, contains an inventory of 3528 cases of slope movements. A database of 12 conditioning factors was prepared, including elevation, slope, aspect, curvature, lithology, rainfall, topographic wetness index (TWI), stream power index (SPI), distance to streams, distance to faults, distance to roads, and land cover. The database was randomly divided into training and validation sets at a ratio of 70/30. The predictive capabilities of the models were evaluated using overall accuracy (Acc), area under the receiver operating characteristic curve (AUC), kappa index, and F score measures. The results indicated that RF was the most suitable model for this study area, demonstrating the highest predictive capability (AUC= 0.86) compared to the other models. This aligns with previous landslide studies, which found that ensemble methods like RF and XGBoost offer superior accuracy. The most important causal factors of landslides in the study area were identified as slope, rainfall, and elevation, while the influence rate of TWI and SPI was the minimum. By analyzing a larger inventory of landslides on a more extensive scale, this study aims to improve the accuracy and reliability of landslide predictions in a west Mediterranean morphoclimatic context that encompasses a wide variety of lithologies. The resulting maps can serve as a crucial resource for land use planning and disaster management planning. Doi: 10.28991/CEJ-2023-09-12-018 Full Text: PDF
Performance Index Model of Raw Water Infrastructure Sri U. Sudiarti; Ussy Andawayanti; Lily M. Limantara; Hari Siswoyo
Civil Engineering Journal Vol 10, No 6 (2024): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-06-014

Abstract

This research intends to build a performance index model of raw water infrastructure mathematically by considering technical, non-technical, and environmental aspects. The research location is in Lombok and the Sumbawa Islands. Data is collected by field surveys and questionnaires that are distributed to 160 respondents related to raw water infrastructure in 21 locations. The methodology consists of Partial Least Squares (PLS) and Generalized Reduced Gradient (GRG). The results show that technical, non-technical, and environmental aspects have a significant influence on the performance index of raw water infrastructure. The structural analysis shows that the technical, non-technical, and environmental variables have a positive and significant influence on the performance index. The performance index of raw water infrastructure is successful enough to be developed and tested by using field data and GRG. The evaluation result shows that the model gives an accurate estimation of raw water infrastructure performance in Nusa Tenggara Barat province. The performance index model for raw water infrastructure is as follows: 0.521 IKTK + 0.305 IKNT + 0.174 IK Liwith the sum of square residual (SSR) is 83.21, the root mean square error (RMSE) is 0.44, the mean square error (MSE) is 3.97, and the accuracy level is 95.25%. This research provides the development of an evaluation method for raw water infrastructure performance and a valuable outlook for policymakers in managing and maintaining raw water infrastructure to support sustainable water resources in the future. Considering some aspects of this, it is hoped the efforts to increase the quality of raw water infrastructure can be more directed and effective, contributing to increasing society's prosperity and a sustainable environment in the region. Doi: 10.28991/CEJ-2024-010-06-014 Full Text: PDF
Effect of the Stepped Spillway Geometry on the Flow Energy Dissipation Karim R. Gubashi; Saad Mulahasan; Zuhair A. Hacheem; Ali Q. Rdhaiwi
Civil Engineering Journal Vol 10, No 1 (2024): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-01-09

Abstract

In this research, flume experiments were conducted on stepped weirs to investigate the effect of step shape on the energy dissipation of flow. Four configurations with a constant number of steps were considered, namely, horizontal steps, inclined steps, horizontal steps with rounded sills, and ‎inclined steps with rounded sills. The slopes of inclined steps were 13% and 23%, and the diameters of the rounded sills of the step ends were 10 and 15 cm. The majority of previous studies focused on energy dissipation in stepped weirs in horizontal and inclined steps. In this research, new step geometries were used, such as horizontal steps with rounded sills and inclined steps with rounded sills. Dimensional analysis was applied to correlate the different variables affecting the flow hydraulics. Flow rates in the range of 0.61-9.12 lit/sec were used with each step shape. Results showed that the inclined steps with rounded sills had the highest flow energy dissipation in comparison to the other types. Rounded sills at the end of steps had more effective energy dissipation than did the horizontal step. However, the 23% inclination slope with rounded sills of a 7.5 cm radius was the most effective in dissipating flow energy. Doi: 10.28991/CEJ-2024-010-01-09 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue