cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Artificial Neural Network-Based Prediction of Physical and Mechanical Properties of Concrete Containing Glass Aggregates Faroq Maraqa; Amjad A. Yasin; Eid Al-Sahawneh; Jamal Alomari; Jamal Al-Adwan; Ahmad A. Al-Elwan
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-018

Abstract

This comprehensive study analyzes the use of crushed glass as both fine and coarse aggregate in concrete, as well as the prediction accuracy of Artificial Neural Networks (ANN). The primary objectives are to understand the interactions between concrete’s constituents and to assess the accuracy of ANN models in predicting concrete’s mechanical and physical properties. This is achieved using a two-decade experimental results dataset of concrete’s compressive and tensile strengths, slump, density, and the corresponding mix design proportions, including waste glass aggregate. A series of 70 concrete samples were carefully built and tested, with compressive strengths varying from 12 to 71 MPa and glass aggregate percentages ranging from 0-100%. These samples served as the basis for the creation of an input dataset and ANN targets. The ANN model underwent intensive training, validation, testing, and statistical regression analysis. The ANN models are exceptionally accurate, with a continuously low error margin of roughly 2%, highlighting their usefulness in matching experimental and predicted results. Validation techniques highlight the models' dependability, with consistently high coefficients of determination (R-values), including 0.99484, demonstrating their robustness in replicating complicated concrete properties. The data analysis shows a unique pattern, with optimum glass aggregate percentages in the range of 10–20%. Beyond this range, there is a noticeable decline in concrete properties. Finally, the study confirms the efficacy of ANN in predictive modeling while also validating the potential of crushed glass to replace natural aggregates in concrete. Doi: 10.28991/CEJ-2024-010-05-018 Full Text: PDF
The Effectiveness of Inclined Pile Breakwater on the Transmission Coefficient Lukman Nurzaman; Pitojo Tri Juwono; Very Dermawan; Indradi Wijatmiko
Civil Engineering Journal Vol 10, No 6 (2024): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-06-09

Abstract

A breakwater is a structure designed to protect coastal areas by breaking and reducing the force of incoming waves. Waves that propagate through a wave dampening building will have some of their energy reflected (reflection), some of their energy transmitted (transmission), and some of their energy destroyed (dissipation). The effectiveness of wave-breaking structures in protecting coastal and harbor waters can be seen from how much wave energy the building can reduce. In this research, the performance of the wave breaker will be seen from the values of wave transmission (Kt) and wave reflection (Kr) with an inclined pile building structure. Reflection and transmission analysis of the results of 2D physical model testing of wave breakers with inclined pile structures are needed to optimize their use. Laboratory test results prove that this Inclined Pile Structure breakwater is quite effective in scenarios that have smaller Kt values and larger Kr values. In this experiment, testing was carried out with several parameters, namely the slope of the pile, the distance between the piles in one row (or distance between pillars), the distance between the tops of the piles (or distance between rows of piles), and the depth of the water. The Kt value in the model α=45°; D=1.69 cm; b=5 cm is 0.603 compared to the model α=60°; D=1.69cm; b=5 cm, Kt value is 0.652. This shows that the inclined pile structure of breakwater is more effective with a pile slope of 45° than with a pile slope of 60°. Doi: 10.28991/CEJ-2024-010-06-09 Full Text: PDF
Evolution and Implications of Changes in Seismic Load Codes for Earthquake Resistant Structures Design Abdul Kadir; Ahmad Syarif Sukri; Nini Hasriani Aswad; . Masdiana; . Nasrul
Civil Engineering Journal Vol 10, No 1 (2024): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-01-04

Abstract

Seismic load is a critical load that can trigger damage or collapse of structures, especially in earthquake-prone areas. The susceptibility of structures to seismic loads is influenced by factors related to soil characteristics and structural behavior. This paper comprehensively examines the development of Indonesian seismic code design parameters and their comparison with the current seismic code. The results of the analysis showed that the design spectral acceleration of short-period AD and long-period A1 SKBI 1987 and SNI 2002 increased with increasing PGA values, with a consistent pattern of SC < SD < SE. Unlike the previous two codes, design spectral acceleration AD and A1 SNI 2012 and SNI 2019 experience fluctuations in all types of soil. The ratio design spectral acceleration of AD and A1 SNI 2019 to KBI 1987 and SNI 2002 varies; there are up, fixed, and down for SC, SD, and SE soil conditions. The ratio of design spectral acceleration AD and A1 SNI 2019 to SNI 2012 designs also varies; this condition is due to changes in site coefficients. There were significant changes to the SKBI 1987 and SNI 2002 structural systems, especially the low and medium seismic levels. The increase in the seismic influence coefficient ratio of some cities varies for each type of soil and code. The increase in the 1970 PMI seismic coefficient was < 30% for all soil types, and the highest percentage increase occurred in SC soil types. The increase in seismic coefficient in SKBI 1987, SNI 2002, and SNI 2012 is more dominant in SE soil types. Doi: 10.28991/CEJ-2024-010-01-04 Full Text: PDF
Effectiveness of Grouting and GFRP Reinforcement for Repairing Spalled Reinforced Concrete Beams Achmad Z. Mansur; Rudy Djamaluddin; Herman Parung; Rita Irmawaty; Daud Nawir
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-05

Abstract

Corrosion of steel reinforcement from chloride exposure can compromise the strength of reinforced concrete structures. Rust formation expands, applying pressure on concrete, resulting in cracks and spalling. Prompt repair is crucial for severe cases of spalling. This research assessed the efficacy of repair strategies for reinforced concrete beams post-spalling, including grouting and different techniques involving Glass Fiber Reinforced Polymer (GFRP) reinforcement. The research examined four variations of reinforced concrete beams, each sized at 150 mm × 200 mm × 3300 mm. Results showed that the standard beam (BK) had an average maximum load capacity of 29.74 kN. In contrast, the grouted beam (BGR) demonstrated a reduced maximum load of 14.39 kN, along with decreased steel and concrete strain compared to BK. This suggests that the grouting repair did not fully restore the beam's flexural capacity after spalling. Incorporating GFRP strips (BGRS) led to a marginal increase in the beam's maximum load, albeit remaining below BK, with lower steel and concrete strain than BK. However, the steel and concrete approached their yield points, indicating enhanced flexural performance. The full-wrap GFRP beam (BGRSF) experienced an 8.08% increase in maximum load compared to BK, with concrete strain surpassing BK, suggesting an enhancement in flexural stiffness. Doi: 10.28991/CEJ-2024-010-07-05 Full Text: PDF
Lateral Displacement Behavior of IBS Precast Concrete Elements Reinforced with Dual System Mohammed Yahya Mohammed Al-Fasih; Walid F. Edris; Samy Elbialy; Abdul Kadir Marsono; Abd Al-Kader A. Al Sayed
Civil Engineering Journal Vol 10, No 1 (2024): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-01-020

Abstract

Throughout history, the construction industry has been a significant contributor to construction waste, presenting an ongoing challenge in efficiently managing this waste to mitigate environmental pollution. The Industrialized Building System (IBS) stands out as a construction approach that utilizes prefabricated components made from various waste materials, implemented with machinery and formwork, leading to minimal waste production. The potential failure of IBS blockwork columns under lateral loads is a significant concern, and the deformation of these columns is crucial in assessing overall structural performance against lateral forces. This study focuses on examining the deformation and flexibility of components in IBS blockwork columns when subjected to lateral loads. Using Finite Element Modeling (FEM), a 1:5 scale prototype model of the dual-reinforced system IBS Block Work Column is analyzed. The IBS Block Work Column, comprising four prefabricated components assembled in the form of a crucifix plan to enhance lateral stability, is subjected to FEM analysis and experimental investigations. The study aims to explore the impact of four different shapes of reinforcement on deformation resistance. The findings suggest that employing a dual-reinforced system in the IBS Block Work Column enhances its resistance to lateral loads compared to a column with conventional reinforcement. Moreover, the assembled IBS Block Work Column exhibits greater stiffness than a single prefabricated component when subjected to lateral loads. Doi: 10.28991/CEJ-2024-010-01-020 Full Text: PDF
Evaluating the Impact of Material Selections, Mixing Techniques, and On-site Practices on Performance of Concrete Mixtures Fadoua Hattani; Bruce Menu; Driss Allaoui; Mustapha Mouflih; Hassan Zanzoun; Hassan Hannache; Bouchaib Manoun
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-016

Abstract

This paper aims to evaluate the influence of sand quality, water-to-cement ratio, binder properties, mix design methods, and mixing techniques on the fresh and hardened properties of concrete. The physicochemical characteristics of coarse aggregates, sands, and binders were analyzed. The experimental results show that the binders and coarse aggregates met standard specifications. However, none of the sands meet construction standards. Corrections were necessary for the dune sands to meet construction standards in terms of grain size distribution and fineness modulus. The results also show that the concretes formulated using the Dreux-Gorisse method exhibited higher quality than the locally formulated concretes. Furthermore, it was found that hand mixing resulted in inadequate mixing, material wastage, lower strength, and increased porosity, whereas machine mixing produced concretes with a more homogeneous microstructure, uniform particle distribution, lower porosity, and higher strength. The batch variability and compressive strength of the hand-mixed concretes were also found to be influenced by the expertise level of the batch mixer and the number of successive hand batches. It was also found that both the soluble silica and the inert methods are reliable for determining binder content in machine-mixed concrete. However, the soluble silica method occasionally exhibited significant variations in hand-mixed concrete compared to the inert method. A combined approach utilizing the average of both methods enhances the overall reliability of the binder content values. Observations on construction sites revealed widespread deviations from recommended guidelines. Issues such as lack of material inspection, proper stockpiling, ingredient contamination, and inadequate batch mixing contributed to variations in concrete workability, porosity, and compressive strength. Doi: 10.28991/CEJ-2024-010-02-016 Full Text: PDF
Dynamic Buckling Analysis of Ductile Damage Evolution for Thin Shell With Lemaitre’s Model Iheb Hammar; Mohamed Djermane; Belkacem Amieur
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-012

Abstract

Thin-shell structures are used in several fields of construction and are often exposed to severe dynamic environments, making them susceptible to dynamic instabilities. These instabilities are typically preceded by varying degrees of damage to the shell, justifying the need to incorporate this behavior in the formulation of the finite elements used. The objective of this work is to evaluate the different dynamic instability criterion in the presence of damage, afterward, evaluate the influence of this behavior on the stability of shells subjected to the dynamic excitations. The methodology of this project is essentially numerical, based on the finite element method. We are asked to program the introduction of damaging behavior and Lemaitre’s model criteria in the DYNCOQ program developed locally. To examine the results, two examples extracted from the literature were presented. The first model aimed to confirm the proper functioning of the program and the convergence of the plasticity criterion (Lemaitre's model). As for the second model, it allows us to test the dynamic instability. A comparison was made with experimental data from previously published literature, revealing a strong agreement between the calculated and experimental results. The obtained results prove the utility of considering this behavior in the shell analysis. Doi: 10.28991/CEJ-2024-010-03-012 Full Text: PDF
Modeling of Heat Transfer in Massive Concrete Foundations Using 3D-FDM Dina M. Mansour; Ahmed M. Ebid
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-05

Abstract

Analyzing and modeling the thermal behavior of mass concrete elements has been widely investigated by several researchers. Lately, many contemporary finite element packages have embedded modules for analyzing thermal behavior. Unfortunately, these packages are quite complex and require experts to be properly implemented. This paper proposes a simple and practical approach using the 3D-Finite Difference Model (3D-FDM) developed by MS-Excel to overcome the complexity of the other FE models. The model is utilized to predict the thermal behavior of actual bridge pile caps (3D model) rather than the previously developed 2D models in earlier research. The results of the analysis are compared with the concrete temperatures that were experimentally obtained from the site. Site data was collected using 18 thermocouple probes (K type) that were installed in two pile caps. These thermocouples were installed before concrete pouring to monitor the temperatures generated due to the exothermic reaction of the cement, which occurs during casting and the maturity period of concrete. The readings were registered every 3 hours for 7 days after concrete placement. This research provides a comparison between the recorded site data and the thermal analysis based on the proposed 3D-FDM. Results proved that concrete temperature time histories at different locations of the bridge pile caps could be properly predicted using the developed 3D-FDM. Doi: 10.28991/CEJ-2023-09-10-05 Full Text: PDF
Properties and Microstructure of Treated Coal Bottom Ash as Cement Concrete Replacement Moad Alosta; Ahmed Mamdouh; Hussein Al Mufargi; Farah N. A. Abd Aziz; Ahmed Rashid; Otman M. M. Elbasir; Husam Al Dughaishi
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-08

Abstract

Sustainable construction is a rapidly growing area of research focused on using industrial waste to replace Portland cement in concrete. This approach not only reduces CO2emissions from cement production but also serves as an effective way to diminish the environmental impact of concrete production. This study aims to investigate the properties of Coal Bottom Ash (CBA) after undergoing two different treatments: flotation and burning. It also evaluates the impact of CBA as a cement replacement in concrete with different replacement percentages (5%, 10%, 15%, and 20%). Chemical analysis of CBA has revealed that it can be classified as a pozzolanic material due to its high content of silicates, aluminates, and iron oxides. The microstructure of CBA showed a porous, angular, and irregular surface with many voids. The findings of this study revealed that the optimum mix was 10% CBA, resulting in a 2% increase in compressive strength compared to the control mix after 56 days of curing. Additionally, the study evaluated the effects of sulfate and chloride on concrete. It was found that the mix with the burning treatment showed an overall increase in strength, while the flotation treatment did not reach the control mix's strength in any of the curing periods. Furthermore, the results demonstrated that CBA has significant potential as a cement replacement material, and the burning treatment showed improvement in concrete's overall properties compared to the raw material in terms of mechanical and chemical properties while reducing greenhouse gas emissions and enhancing the environment. Doi: 10.28991/CEJ-2024-010-04-08 Full Text: PDF
Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism Kazem Javan; Mehrdad Mirabi; Sajad Ahmad Hamidi; Mariam Darestani; Ali Altaee; John Zhou
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-01

Abstract

The Ardabil Plain is pivotal in the national agricultural sector and ranks among the leading agricultural and horticultural production provinces. The primary objective of this study is to enhance environmental sustainability in this critical and vulnerable region, particularly in the face of imminent droughts and climate change. The study examines the impacts of climate change on agriculture and tourism in the area. It puts forward suggestions for implementing sustainable practices to safeguard the well-being of the local population. The results indicate a 38% reduction in precipitation, especially in the autumn season, with a possible alteration in the timing and strength of rainfall. Also, a notable decline in production volume, particularly in a specific region of the Ardabil plain, has been observed. The Ardabil Plain currently produces 284,182 tons of wheat, with 204,980 tons from irrigated crops and 79,202 tons from rain-fed crops. However, the projected future scenario indicates a decrease in total wheat production to 209,196 tons, with 160,125 tons from irrigated crops and 49,071 tons from rain-fed crops. This decline in production is expected to lead to a total net income loss of approximately -$75,389,059, with -$45,095,663 attributed to irrigated crops and -$30,293,396 to rain-fed crops. The study findings suggest that the availability of water sources in certain regions may prompt a shift in farming land from the north to the south of the plain to promote environmental sustainability. This demographic change could have significant financial and social implications for the region's growth and prosperity. Moreover, increasing temperatures in the western and northern regions pose flood risks and uncomfortable travel conditions, particularly concerning given the reliance on tourism and potential unemployment consequences. It becomes imperative to adopt sustainable practices and manage resources effectively to ensure the region's resilience and prosperity in the face of environmental challenges. Doi: 10.28991/CEJ-2023-09-11-01 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue