cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Evaluating the Performance of Right Turn Lanes at Signalized Intersection Using Traffic Simulation Model Zainab Ahmed Alkaissi
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-010

Abstract

The issue of traffic congestion at signalized intersections is a concern in transportation systems due to the growth of urban areas and increased vehicular transportation. To study the evolution of congestion and evaluate the traffic performance operation of signalized intersections under problematic congested and improved conditions, the microscopic simulation VISSIM software is utilized. The objectives of this paper are to evaluate operational techniques, build a simulation model, and produce a well-calibrated and validated model. The methodology procedure to evaluate the signalized intersection involves the application of a traffic simulation model to observe real-time delays and stopped vehicles. Using the VISSIM software Version 9 to create an intersection model and redesign geometry with an exclusive right turn to enhance the intersection functionality and reduce delay. Our research focused on the Al-Nakhala signalized intersection located in the southern part of Palestine urban street in Baghdad city. This intersection is one of the busiest along the corridor due to significant land-use changes in the study area, including residential, educational, or commercial areas generating daily pressure from additional trips and saturating the absorptive capacity of the intersections. The proposed scenario of an exclusive right–turn could reduce the queue length and vehicle delay at the signalized intersection, resulting in a more efficient traffic operation. As a result of the reduction in vehicle delay, the Level of service (LOS) for the north, west, and east approaches improved from F to D. However, there was only a slight improvement for the south approach, with the LOS changing from E to F. Nonetheless, there was a noticeable reduction in queue length and vehicle delay ranging from 25% to 50%. Doi: 10.28991/CEJ-2024-010-07-010 Full Text: PDF
Experimental and Numerical Analysis of Concrete Columns under Axial Load Based on European Design Norms Florim Grajçevci; Armend Mujaj; Driton Kryeziu; Elfrida Shehu
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-05

Abstract

This study presents a comparison between numerical and experimental results for reinforced concrete columns subjected to axial compression. Depending on the columns support and their organization within the structure, columns primarily work under either concentric or eccentric compression, respectively, bending in situations where horizontal actions such as wind or/and earthquakes are present in the structure. Different countries have specific design codes, and in this study, the calculation of columns is based on the European design codes, specifically EN 1992-1-1. As a common practice in most cases during research, tests are conducted using computational models, and based on the obtained results through the application of similarity theory, an attempt is made to transition to the actual behavior of structural elements. Therefore, this paper applies a logic of "almost real" testing, where two columns with square cross-sections were produced and tested. The columns had a rectangular base with cross-section dimensions of 20/20 cm and a height (L) of 300 cm, with a concrete strength of fcm,cube=61.80 MPa. They were reinforced with longitudinal reinforcement (4Ø12 mm) and had a tensile strength of ftm=588.10 MPa. Additionally, stirrups of Ø8 mm were placed at every sw=25 cm. Experimental results show a closer alignment with software calculations using SEISMOSOFT with an accuracy of 96%, while results according to EN 1992-1-1, based on simplified methods, show 64% for the Nominal Stiffness Method and 59% for the Curvature Method. Doi: 10.28991/CEJ-2024-010-02-05 Full Text: PDF
Measurement Model for Determining the Disparity Factors of Intercity Railway Transportation Kestsirin Theerathitichaipa; Panuwat Wisutwattanasak; Chinnakrit Banyong; Manlika Seefong; Sajjakaj Jomnonkwao; Thanapong Champahom; Vatanavongs Ratanavaraha; Rattanaporn Kasemsri
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-01

Abstract

Countries that are still developing experience significant disparities in access to railway services, as these nations also grapple with societal inequality issues that remain unaddressed. In developed countries, railway transportation systems serve as the primary mode of transportation for both passengers and goods. However, in recent years, studies on disparities in developed countries have increased, while literature concerning developing countries remains scarce. Therefore, this study takes place in Thailand, a developing country facing significant population disparities. The objective is to examine factors contributing to these disparities in access to railway transportation systems across cities, using Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) to identify user disparities. The sample group comprises 1,252 randomly selected railway users from various regions in Thailand, obtained through Stratified Random Sampling. The results reveal seven dimensions of disparities: cultural, spatial, societal, political, knowledge-based, economic, and environmental. The CFA results also highlight cultural disparities as a significant factor in explaining access disparities among railway users. These findings can inform relevant organizations, aiding them in better understanding the actual needs of railway users and aligning railway development plans accordingly. Ultimately, this contributes to policy development aimed at reducing access disparities and fostering a more equitable society. Doi: 10.28991/CEJ-2024-010-03-01 Full Text: PDF
Influence of Gypsum on the Residual Properties of Fly Ash-Slag-Based Alkali-Activated Concrete Sandeep G. S.; Poornachandra Pandit; Shreelaxmi Prashanth; Jagadisha H. M.
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-017

Abstract

High-temperature exposures of concrete lead to serious damage in concrete structures, resulting in the significant decay of mechanical properties and spalling of concrete. Alkali-activated concretes (AAC) of blended aluminosilicate precursors and activators have been proven to have higher thermal endurance than conventional portland cement concrete. Incorporation of gypsum (GY) in alkali-activated systems has proven to positively impact the mechanical properties when adopted in controlled amounts. GY releases SO42- to the binder system, which helps in the formation of ettringites, along with Ca2+, which leads to the formation of hydrates. This causes a reduction in porosity and improves strength gain. Incorporation of GY into the fly ash-slag-based alkali-activated system further improves thermal endurance by retaining considerable residual strengths even after 800°C exposure. In the present study, the influence of GY on the residual mechanical properties of fly ash-slag-based AAC is investigated to explore the thermal endurance of the ternary mix at elevated temperatures. The mechanical properties of fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS), and gypsum (GY) ternary blended AAC subjected to elevated temperatures are studied in comparison with conventional portland cement concrete (control mix). AAC design mixes with varying proportions of GY as a replacement to FA-GGBS precursor are tested for mechanical properties to obtain the optimum mix. The residual mechanical properties of the FA-GGBS-GY optimum ternary AAC mix are obtained after exposure to elevated temperatures up to 800°C. The morphology and microstructural characteristics of AAC are studied by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses to investigate the influence of gypsum on the thermal endurance of concrete when exposed to elevated temperatures. Improved thermal endurance is observed for AAC when FA-GGBS precursors are replaced with 5% of GY as compared to the thermal endurance of conventional portland cement concrete (PCC) of the same compressive strength. Doi: 10.28991/CEJ-2024-010-03-017 Full Text: PDF
Modelling Flood Wave Propagation as a Result of Dam Piping Failure Using 2D-HEC-RAS Mahmood J. Mohamed; Ibtisam R. Karim; Mohammed Y. Fattah; Nadhir Al-Ansari
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-010

Abstract

In recent years, there has been a serious request for innovative, accurate approaches to be determined and controlled for dam failures. The present study aims to explore and evaluate the flood wave parameters that result from a dam break due to piping failure occurring in the body of the dam and routing the flood waves. Mosul Dam, which lies in the north of Iraq, and a reach of the Tigris River downstream the dam to Samarra Barrage at about 470 km are selected as a case study. A two-dimensional Hydrologic Engineering Center River Analysis System (2D HEC-RAS) and the Geographic Information System (GIS) have been supposed to be suitable for development calculations of the flood wave parameters based on the Digital Elevation Model (DEM) and land cover satellite images that enhance the calculations. The reservoir and two-dimensional flow area are delineated and incorporated with DEM. Manning`s coefficient for the whole area has been extracted according to the Land Cover satellite image, which showed that its value ranges between 0.025 to 0.037 with a correlation coefficient R2equal to 0.845 and 0.801 for the calibration and validation processes, respectively. The results of the scenario display a substantial performance of the maps produced from the model that represented the depth, velocity, and water surface elevation. All the maximum values of dam break parameters lie near the dam body and slightly decrease downstream. It is pre-eminent that the 2D HEC-RAS model is appropriate for analyzing and simulating the occurrence of dam breaches by visualizing the distribution of flood wave depth and velocities in two dimensions. Hence, the clear improvement in producing maps, which monitor the spread of hydrodynamic waves, gives an indication of risk areas that are threatened by inundation and aids in the formulation of emergency plans. Doi: 10.28991/CEJ-2023-09-10-010 Full Text: PDF
Highlighting Traffic Accidents on Roundabouts Using MRSS-AHP Expert System Ghassan Suleiman; Mohammad K. Younes; Murat Ergun; M. F. Abushammala; Mohammad Aljaradin
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-013

Abstract

The frequency and severity of traffic accidents are causing growing concern. This study aims to develop a tool to improve the traffic safety level on roundabouts and identify the influence of traffic operations, geometric parameters, weather, and time of day on improving roundabout traffic safety. It is the first study to evaluate the performance of the integrated Median Ranked Set Sample (MRSS) and Analytic Hierarchy Process (AHP) with statistical analysis. A hierarchy tree of accident causes has been developed using data gathered from accident reports and relevant authorities. Then, the selected stakeholders’ professionals prioritized the traffic accident causes using a MRSS and AHP. Moreover, traffic microsimulation software VISSIM was also used to extract traffic operation parameters for the analysis. Afterwards, Analysis of Variance (ANOVA) was used to validate the causes of traffic accidents. The results show that geometric design accounts for 36% of accidents at roundabouts, followed by traffic operation (22%). However, conflicting and queuing lengths are responsible for about 20% of traffic accidents. The tools developed, and the causes of accidents determined in this study will help geometric designers and city planners to take the necessary measures to minimize accidents and enhance traffic safety levels in urban areas. Doi: 10.28991/CEJ-2024-010-04-013 Full Text: PDF
Seepage Analysis and Optimization of Reservoir Earthen Embankment with Double Textured HDPE Geo-Membrane Barrier Kennedy C. Onyelowe; Akash Nimbalkar; Narala G. Reddy; Jair de Jesus A. Baldovino; Shadi Hanandeh; Ahmed M. Ebid
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-07

Abstract

This research paper focuses on conducting a steady state seepage analysis along with the downstream slope factor of safety using the Modified Bishops method in a poorly compacted earthen embankment and optimizing the same reservoir earthen embankment in a case study located near Sadiyavav village in Junagadh district in Gujarat, India. The study site, situated at 21°32'06.5"N and 70°37'26.7"E, is renowned for its Asiatic lions. The analysis and optimization were performed with a double-textured High-Density Polyethylene (HDPE) Geo-membrane barrier. Previously, designs and numerical solutions proposed homogenous embankments and too poorly compacted with no drainage arrangements, which led to anisotropic conditions within the section and water seeping out, cutting the phreatic line. The paper presents the documented improvements in the factor of safety achieved through the seepage analysis and the optimization of the HDPE Geo-membrane barrier. Two improvement techniques were studied using the “Limiting Equilibrium-Finite Element Method” (LS-FEM). The first using (HDPE) Geo-membrane stabilized with gabions, and the second alternative using HDPE Geo-membrane with gabions in addition to rock toe. The study results showed improvements in the downstream slope stability for the two alternatives by 3% and 10%, respectively. Doi: 10.28991/CEJ-2023-09-11-07 Full Text: PDF
Optimizing Gene Expression Programming to Predict Shear Capacity in Corrugated Web Steel Beams Mazen Shrif; Zaid A. Al-Sadoon; Samer Barakat; Ahed Habib; Omar Mostafa
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-02

Abstract

Corrugated web steel systems, such as corrugated web girders (CWG) and beams (CWSB), have the potential to influence the modern construction industry due to their unique properties, including enhanced shear strength and reduced necessity for transverse stiffeners. Nevertheless, the lack of a rapid and accurate design approach still limits its wide applications. Recently, gene expression programming (GEP) has been employed to predict the shear capacity of cold-formed steel channels, demonstrating superior predictive accuracy and compliance with established standards. This study applies GEP to predict the shear capacity of sinusoidal CWSBs and optimizes its predictive performance by employing a systematic grid search to explore combinations of chromosomes, head sizes, gene counts, and linking functions. The process involved testing 19 different parameter combinations and more than 60 developed models. The findings include the sensitivity of the model's performance to gene count and the critical role of the linking function. The optimal model in the study, GEP13, achieved R² of 0.95, an RMSE of 100.5, and an MAE of 86.6 in the testing dataset with 150 chromosomes, a head size of 12, and four genes using a multiplication linking function. Doi: 10.28991/CEJ-2024-010-05-02 Full Text: PDF
Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye . Adnan; . Nisar; Rahim Shah; Farah Muhammad Zada; Behramand Khan; Shaukat Aziz; Najeeb Ur Rehman; Ho Soonmin; Nisar Ahmad; Mansoor Khan; . Hanzala
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-011

Abstract

Water scarcity threatens human civilization because of rapid industrialization's damage to freshwater sources. Pollutants like dyes, which are frequently found in the paper, leather, food, plastics, textile, and cosmetics industries, must be removed to preserve water. In the present study, Zinc oxide nanocomposites impregnated with nickel (Ni/ZnO) were prepared using a wet impregnation technique. These novel materials were investigated for their ability to photocatalytically degrade malachite green (MG) under the irradiation of visible. The synthesized nanocomposite catalyst was characterized by various analytical techniques, including SEM, EDX, XRD, and BET methods of surface analysis, and revealed a high surface area of 192.88 m2g-1 with an average size range from 88-354 nm. EDX results showed efficient doping of Ni (28.9%). The composites were then used under the influence of a visible light source to degrade MG dye. The investigation also assessed the degradation of MG using a photo-Fenton reagent. Factors such as catalyst dosage, H2O2 levels, pH, and duration were optimized to understand their impact in both degradation studies. The synthesized catalyst showed stunning photocatalytic activities, as 99.4% of the 60 µg.ml-1of MG was degraded in 40 min with 100 mg of Ni/ZnO at pH 8. Ni/ZnO had a good application prospect for MG degrading and can be used as a potential photocatalyst. Doi: 10.28991/CEJ-2024-010-08-011 Full Text: PDF
Effect of Silane and Silicate based Penetrants against Corrosion of Steel with Partial Cover Thickness Muhammad Afaq Khalid; Shinichi Miyazato; Tatsuya Minato; Hibiki Mizuguchi
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-02

Abstract

The partial cover thickness of reinforced concrete structures near the coastline enhances the early corrosion onset, which reduces the service life. As a countermeasure under the preventive maintenance approach, to delay early corrosion onset in structures with partial cover thickness and increase durability throughout the service life, this study used silane and silicate-based surface penetrants. Mortar specimens with a partial cover thickness and embedded, specially segmented bars were prepared. Both penetrants were applied to specimens with partial cover thicknesses (20 and 7.5 mm). Further, electrochemical methods such as macrocell current, microcell current, electric resistivity, and potentiodynamic polarization curves were used to assess the corrosion resistance before and after coating. The penetration depth of silane was measured visually, and the Vickers hardness test was used for the silicate penetrant. The “equivalent cover approach” was adopted to evaluate the performance of penetrants throughout their service lives. Results revealed that the total corrosion current density decreased by 79% for specimens coated with silane and 52% for silicate penetrant, whereas no change was observed in the uncoated specimens. Based on the equivalent cover approach, the silane penetrant was determined to be most effective in delaying the corrosion onset and propagation time for cover thicknesses of 60 and 50 mm at 100 m distance against 70 mm, and for 40 and 30 mm against 50 mm at 250 m from the coastline. Further, the silicate-based penetrant was only effective for a deficient cover thickness of 5 mm against the specified cover thicknesses at a distance of 100 and 250 m from the sea coast. Doi: 10.28991/CEJ-2023-09-12-02 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol. 10 No. 7 (2024): July Vol 10, No 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue