cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Evaluation of Concrete with Partial Replacement of Cement by Waste Marble Powder Mushraf Majeed; Anwar Khitab; Waqas Anwar; Raja Bilal Nasar Khan; Affan Jalil; Zeesshan Tariq
Civil Engineering Journal Vol 7, No 1 (2021): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091637

Abstract

This study aims to evaluate concrete having Waste Marble Powder (WMP) as partial replacement of cement. Marble is the metamorphic form of limestone (CaCO3) and WMP was chosen as substitute of cement on account of its high calcium oxide content. WMP is by-product of marble industry and is an environmental burden. The manufacturing of cement is also environmentally hazardous owing to emission of greenhouse gases. Thus, the recycling of WMP in place of cement in concrete offers two ecological advantages. Thirdly, WMP has a specific gravity of 2.6 against that of 3.15 for cement, which reduces the weight of the finished products. Based on the previous studies, five different concrete mixes were prepared having 0, 5, 10, 15 and 15% replacement levels. The samples were evaluated both through destructive and non-destructive tests.  Destructive tests included compressive, tensile and flexural strengths, whereas non-destructive tests comprised of ultrasonic pulse velocity (UPV) and rebound hammer. It was observed that the workability decreases with WMP inclusion owing to its higher water absorption, which inhibits lubrication of cement particles. The concrete strength improves up to a replacement level of 10% by mass of cement on account of densification created by the finer WMP and un-hydrated cement particles, which act as hard inclusions. Beyond 10%, the concrete strength starts declining due to insufficient quantity of cement matrix, binding the WMP particles. Schmidt rebound numbers authenticate the compressive strength results: The number increases up to 10% replacement level and beyond 10% it decreases. The results of UPV indicate that the velocity increases with increase in WMP content: The increase is attributed to compactness of the composite with finer WMP particles. Doi: 10.28991/cej-2021-03091637 Full Text: PDF
Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames Athmane Rahem; Yahiaoui Djarir; Lahbari Noureddineb; Bouzid Tayeb
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091653

Abstract

The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered. Doi: 10.28991/cej-2021-03091653 Full Text: PDF
Performance of Aged Asphalt Binder Treated with Various Types of Rejuvenators Munder Bilema; Yusri Bin Aman; Norhidayah Abdul Hassan; Zaid Al-Saffar; Kabiru Ahmad; Kabiru Rogo
Civil Engineering Journal Vol 7, No 3 (2021): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091669

Abstract

High demand for asphalt binders in road construction verifies the need of finding alternative materials through asphalt pavement recycling. This paper investigated the impact of different rejuvenators on the performance of an aged asphalt binder. Virgin Olive oil, virgin cooking oil, waste cooking oil, virgin engine oil, and waste engine oil were added to a 30/40 penetration grade aged asphalt binder at a fixed oil content of 4% for all types. The wet method was used to blend the rejuvenators and aged asphalt binder. The physical, rheological, and chemical properties of the rejuvenated asphalt binder were evaluated using several laboratory tests which include penetration, softening point, bleeding, loss on heating, storage stability, penetration index, ductility, viscosity, dynamic shear rheometer, and Fourier transform infrared spectroscopy. The outcomes of the physical properties showed that the olive, waste, and virgin cooking rejuvenators can restore the aged asphalt binder to a penetration grade of 60/70. In contrast, the virgin and waste engine oil required a more quantity of oil to rejuvenate the aged asphalt binder. A sufficient amount of rejuvenator could regenerate the (G*/sin δ), (δ°), and (G*) for the aged asphalt binder. The addition of virgin olive and cooking oils in aged asphalt led to a rutting issue. No chemical reactions were observed with the addition of rejuvenators but they give an impact on reducing the oxidation level of the aged asphalt binder. As a result, further research should be performed on waste cooking oil given that it is inexpensive and provides excellent performance results. Doi: 10.28991/cej-2021-03091669 Full Text: PDF
Traffic Congestion: Shift from Private Car to Public Transportation Layth Riyadh Abdulrazzaq; Mohammed Naeem Abdulkareem; Muhamad Razuhanafi Mat Yazid; Muhamad Nazri Borhan; Mina Salah Mahdi
Civil Engineering Journal Vol 6, No 8 (2020): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091566

Abstract

Private Cars (PC) are becoming the most common way to travel daily. This is one of the effects of poor access to Public Transport (PT). As a result, increase air pollution, traffic congestion, noise, accidents. This study aims to develop a modal shift model for car users to shift to PT and determine the factors that effects the performance of the mode of transportation. A survey of 384 of PT users was conducted in Kajang city, Malaysia. Data were processed by SPSS software. A binary logit model has been used for three different lines (car, train and bus). The explanatory factors that looked at two models include trip distances, a trip rate per day, trip time, gender, age, and occupation, which are important variables. Mode Choice Model (Car vs Bus) show the travel time and distance travelled are significant factors to increase the use of public buses and reduce dependence on the car. While in Model (Car vs Train), the travel time is an important variable that effects of the switching decision between car and train. Younger people are more likely to switch in both models. Improve some factors like reliability in public transport services and change some fundamental policy could be the most effective measures for shifting from PC to PT.
Performance of Retrofitted Square Reinforced Concrete Column using Wire Mesh and SCC Subjected to Cyclic Load Hence M. Wuaten; Herman Parung; A. Arwin Amiruddin; Rita Irmawaty
Civil Engineering Journal Vol 7, No 4 (2021): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091685

Abstract

One way to restore or increase the strength of the structure against earthquakes is to use retrofit method and wire mesh is a material that has high prospects as retrofit material. The purpose of this study was to examine the use of wire mesh as a retrofit material on reinforced concrete columns burdened with cyclic loads. In this study, testing of 3 square column samples of reinforced concrete with dimensions of 300  300 mm. The first specimen is fully retrofit on the entire cross-section of the column, the second specimen is retrofitted on the plastic hinge area of the column and the third specimen is a control column without retrofit. In the first and second specimens were retrofitted with wire mesh size M6 using SCC which was then tested with a cyclic load using displacement control method based on the provisions stipulated in the Indonesian Standard SNI 7834:2012. From the test results and analysis results, it was found that the capacity and ductility of displacement in retrofit specimens increased significantly compared to specimens that were not retrofit. In addition, the decrease in stiffness in retrofit specimens was smaller than in non-retrofit specimens. As for the value of energy dissipation in fully retrofit specimens and in retrofit on the plastic hinge area is almost close. Based on these conditions, the use of wire mesh size M6 and SCC can be used as retrofit material on the column that is burdened with cyclic load. Doi: 10.28991/cej-2021-03091685 Full Text: PDF
Analyzing Engineering-Related Delays Using Quality Function Deployment in Construction Projects Salah Aldeen Salah
Civil Engineering Journal Vol 6, No 9 (2020): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091582

Abstract

This paper presents a methodology for analyzing engineering-related delays in construction projects using Quality Function Deployment (QFD). The steps of the QFD technique are combined in the quality and control policy. A reference matrix based on the literature review is constructed with engineering delays and a survey of all parties involved in construction projects. The QFD matrix aids in identifying the most significant reasons for delays and claims in the construction projects. For the identified reasons, solutions have been developed to limit or reduce them. The mean sources of construction delays include engineering, construction, financial/economic, management/administrative, and force majeure. This paper presents a knowledge-based QFD technique dedicated to engineering-related delays. Three categories of Engineering-related delays are considered in the proposed system. These categories are 1) design development, 2) workshop drawings, and 3) project party’s changes delays. The knowledge of the QFD matrix is acquired from literature, Federation International des Ingenious - Conseils (FIDIC) contract forms, domain experts, as well as a questionnaire survey. Three classes of participants (i.e., consultants, contractors, and Employers) have been approached to get their feedback on the cases of engineering-related delays. The proposed approach helps to limit or reduce delays in construction projects caused by the engineer. Accordingly, it was concluded to the most important reasons that led to the delay of construction projects related to the engineer, using QFD.
Liquefaction Analysis using Shear Wave Velocity Filali Kamel; Sbartai Badreddine
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091594

Abstract

The Andrus and Stokoe curves developed based on shear wave velocity case history databases, are the most widely used in the context of the Seed and Idriss simplified procedure as a deterministic model. Theses curves were developed from the database according to the calculate cyclic stress ratio (CSR) proposed by Seed and Idriss in 1971 with the assumption that the dynamic cyclic shear stress (τd) is always less than the simplified cyclic shear stress (τr) deduced by Seed and Idriss based on their simplifying hypotheses (rd= τd / τr <1). Filali and Sbartai in 2017, showed that rd can in many cases be greater than 1, and they have proposed a correction for the CSR in the range where rd >1. In this paper, we will present a probabilistic study based on the Bayesian method for the evaluation of the liquefaction potential of a soil deposit using a case history database based on shear wave velocity measurement. The result of this analysis shows that by using the corrected version of the simplified method, the boundary curve is moved to a new position. Then, the objective of this study is to present an adjusted mathematical model which characterizes the new position of the boundary curve (CRR) and a new formulation for computing the probability of liquefaction based on the probabilistic shape of the CRR curves using the corrected and the original version of the simplified method.
Evaluation of Cable Force Changes Effects on Cable Stayed Bridge Theint Theint Thu Soe; San Yu Khaing
Civil Engineering Journal Vol 6, No 11 (2020): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091609

Abstract

The proposed bridge, which is cable stayed bridge crosses the Hlaing River that flows through Western Yangon. It was completed in 2000 and is currently used to connect Insein Township with Hlaing Tharyar Township. It has the 20 years’ service life. It requires the inspection and the evaluation of the real condition of the structure. As cable element plays an important role in cable structures, evaluation of the real state of the stay cable is one of the main focuses of the cable stayed bridge. Firstly, in the research work all cables are inspected to evaluate the current condition of the cables with included visual inspection and vibration-based cable force measurement method. With the help of static and moving load analysis, the effect of force change cables in which the successive force changes are considered, and the possible cable loss effect on the structural behavior of the bridge are also investigated. The finite element model of the cable stayed bridge is developed based on the geometric shape and material properties from MOC and is modelled with finite element software MIDAS Civil. The tension forces obtained by inspection over years (2000 to 2018) using vibration-based measurements method are compared with the measured intact cable forces. According to the results of the data analysis, it is observed that the cables force variations of the seven cables are abnormal conditions. In order to evaluate the condition of a bridge effected by cable force variation, the two parameters are considered; percentage increase in tension stress of all cables and percentage increase in deflection of the deck. The present study describes the structural response of the bridge in order to evaluate the actual safety of the bridge with abnormal force change cables, and also examines the consequences of one cable failure. Doi: 10.28991/cej-2020-03091609 Full Text: PDF
Experimental Assessment of Mineral Filler on the Volumetric Properties and Mechanical Performance of HMA Mixtures Hanaa Khaleel Alwan Al-Bayati; Abimbola Grace Oyeyi; Susan L. Tighe
Civil Engineering Journal Vol 6, No 12 (2020): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091619

Abstract

This research is conducted to evaluate the influence of mineral filler on the volumetric properties, mechanical and field performance of Hot Mix Asphalt (HMA). Two mineral filler types, namely, Hydrated Lime (HL) and Dust Plant (DPt) were used. Three filler proportions were utilized greater than 1% which represents the most applicable percentage, especially for HL, used by the Ministry of Transportation Ontario (MTO). The effect of filler on various volumetric properties including Voids In Mineral Aggregates (VMA), Voids Filled With Asphalt (VFA), dust to binder ratio (Dp) is examined. Mechanical and predicted field performance of HMA to the best filler proportion that meets all the MTO limitations is also investigated. The obtained results indicated that the Optimum Asphalt Content (OAC), VMA, and VFA decrease as the filler content is increased. HMA mixtures that includes DPt filler had the higher values of VMA, VFA, and OAC compared to the hydrated lime. The addition of filler with 2.5% percentage is very successful for both filler types due to satisfying all MTO requirements for volumetric properties of HMA. Based on MTO specifications, the addition of 2.0% filler seems to be unsuccessful for both filler types due to lowering the Dp ratio. Mix design with 3.0% filler was also unsuccessful because of the lower value of OAC meaning that the mix is dry and there is insufficient asphalt binder to coat the aggregate particles. Besides, filler type has a significant effect on the mechanical properties of the HMA mixtures. As a filler in HMA mixtures, the utilization of HL as a portion of 2.5 % leads to a significant improvement in mixture resistance to water and freezing and thawing. The mixtures that included HL have a higher cracking resistance, greater stiffness, and a higher fracture stress than the mixtures that included DPt. Furthermore, predicted field performance indicated better outcomes for mixes with HL compared to DPt mixes. Doi: 10.28991/cej-2020-03091619 Full Text: PDF
Macroscopic Traffic Flow Characterization for Stimuli Based on Driver Reaction Waheed Imran; Zawar H. Khan; T. A. Gulliver; Khurram S. Khattak; Salman Saeed; M. Sagheer Aslam
Civil Engineering Journal Vol 7, No 1 (2021): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091632

Abstract

The design and management of infrastructure is a significant challenge for traffic engineers and planners. Accurate traffic characterization is necessary for effective infrastructure utilization. Thus, models are required that can characterize a variety of conditions and can be employed for homogeneous, heterogeneous, equilibrium and non-equilibrium traffic. The Lighthill-Whitham-Richards (LWR) model is widely used because of its simplicity. This model characterizes traffic behavior with small changes over a long idealized road and so is inadequate for typical traffic conditions. The extended LWR model considers driver types based on velocity to characterize traffic behavior in non lane discipline traffic but it ignores the stimuli for changes in velocity. In this paper, an improved model is presented which is based on driver reaction to forward traffic stimuli. This reaction occurs over the forward distance headway during which traffic aligns to the current conditions. The performance of the proposed, LWR and extended LWR models is evaluated using the first order upwind scheme (FOUS). The numerical stability of this scheme is guaranteed by employing the Courant, Friedrich and Lewy (CFL) condition. Results are presented which show that the proposed model can characterize both small and large changes in traffic more realistically. Doi: 10.28991/cej-2021-03091632 Full Text: PDF

Page 82 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue