cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
A Novel Integration of PCM with Wind-Catcher Skin Material in Order to Increase Heat Transfer Rate Seidabadi, Leila; Ghadamian, Hossein; Aminy, Mohammad
International Journal of Renewable Energy Development Vol 8, No 1 (2019): February 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.1.1-6

Abstract

In this research, a comprehensive simulation study including 3-D Dynamic time-dependent has been performed for Phase Change Materials (PCMs) applicant as a thermal storage integrated with the wind-catcher-wall in order to reduce the temperature difference (As a sustainable cooling method) in the MATLAB open-source–code software. By means of 3-D Dynamic time-dependent, as a final finding, the temperature drop (Cooling purpose) was obtained 25 degrees at about 7 working hours. Passive cooling can be considered as a viable and attractive strategy for the sustainable concept, opposed to mitigation of energy consumption and Green House Gas (GHG) simultaneously. One of the traditional-old-age famous passive cooling systems that are still being applied nowadays is wind-catcher as an energy system. The wind catcher sustain natural ventilation and cooling in buildings through wind-driven airflow as well as temperature difference. Windcatchers can save the electrical energy used to provide thermal comfort during the hot climate in summer case of the year, especially during the peak hours contributed to energy carriers’ consumptions. In this study, by proposing a new design of the windcatchers, attempts have been made to improve the energy efficiency of passive cooling methods. Besides, the application of new efficient methods for the purpose of thermal energy storage (PCM) as a sub-system is a chosen method to increase energy efficiency. By applying energy storage systems in addition to increase system energy performance and reliability, the target of reducing energy consumption is achieved.© 2019. CBIORE-IJRED. All rights reservedArticle History: Received May 18th 2018; Received in revised form October 5th  2018; Accepted January 5th 2019; Available onlineHow to Cite This Article: Seidabadi, L., Ghadamian, H, and Aminy, M. (2019) A Novel Integration of PCM with Wind-Catcher Skin Material in Order to Increase Heat Transfer Rate. Int. Journal of Renewable Energy Development, 8(1), 1-6.https://doi.org/10.14710/ijred.8.1.1-6
Comparative Analysis of Biodiesels from Calabash and Rubber Seeds Oils Awulu, J.O.; Ogbeh, G.O.; Asawa, N.D.
International Journal of Renewable Energy Development Vol 4, No 2 (2015): July 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.2.131-136

Abstract

Physicochemical properties of biodiesel from vegetable oils depend on the inherent properties of the oil-producing seeds. The purpose of this study is to investigate the physicochemical properties of biodiesels extracted from calabash and rubber seeds oils, as well as their combined oil mixtures with a view to ascertaining the most suitable for biodiesel production. Calabash and rubber seeds oils were separately extracted through the use of a mechanical press with periodic addition of water. Biodiesels were produced from each category of the oils by transesterification of the free fatty acid (FFA) with alcohol under the influence of a catalyst in batch process. The physicochemical properties of the biodiesels were investigated and comparatively analysed. The results obtained indicated an average of 1.40 wt% FFA for biodiesel produced from the purified calabash oil, which has a specific gravity of 0.920, pH of 5.93, flash point of 116 0C, fire point of 138 0C, cloud point of 70 0C, pour point of -4 0C, moisture content of 0.82 wt% and specific heat capacity of 5301 J/kgK. Conversely, the results obtained for biodiesel produced from the purified rubber oil showed an average of 33.66 wt% FFA, specific gravity of 0.885, pH of 5.51, flash point of 145 0C, fire point of 170 0C, cloud point of 10 0C, pour point of 4 0C, moisture content of 1.30 wt% and specific heat capacity of 9317 J/kgK. However, results obtained for biodiesel produced from the combined oil mixtures indicated an average of 19.77 wt% FFA content, specific gravity of 0.904, API gravity of 25.036, pH value of 5.73, flash point of 157 0C, Fire point of 180 0C, cloud point of 9 0C, pour point of 5 0C, moisture content of 0.93 wt% and specific heat capacity of 6051 J/kgK. Biodiesel produced from calabash seed oil is superior in quality to rubber seed oil, particularly in terms of its low FFA and moisture contents.
Microgrids for rural schools: An energy-education accord to curb societal challenges for sustainable rural developments Chatterjee, Abhi; Brent, Alan; Rayudu, Ramesh; Verma, Piyush
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.231-241

Abstract

Quality education and schools have a key role to play in the sustainable development of society. Unfortunately, many remote communities in developing countries fail to enjoy access to quality education due to a lack of electricity, thereby interrupting regular school services in the villages. The main objective of the paper contributes to understanding the importance of the energy-education accord, and aims to curb the social challenges prevailing in the villages. Specifically, the paper suggests a technical intervention by designing a hybrid renewable energy system for such schools. The approach is demonstrated through a case study with a load demand of approximately 4 kWh/d, comprising a class size of 40 students. A techno-economic evaluation of the energy system reveals the levelized cost of energy of the system at USD 0.22 per kWh, which may be affordable considering number of other aspects, outlined in this paper, to enable a larger uptake of such systems in developing countries. ©2019. CBIORE-IJRED. All rights reserved
Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh Hoque, Najmul; Roy, Amit; Beg, Mohd. Rafiqul Alam; Das, B. K.
International Journal of Renewable Energy Development Vol 5, No 1 (2016): February 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.1.73-78

Abstract

In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL) the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form Dec 15, 2015; Accepted February 2, 2016; Available onlineHow to Cite This Article: Hoque, N., Roy, A., Beg, M.R.A. and Das, B.K. (2016) Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh. Int. Journal of Renewable Energy Development, 5(1), 73-78.http://dx.doi.org/10.14710/ijred.5.1.73-78 
Analytical and Numerical Solution for H-type Darrieus Wind Turbine Performance at the Tip Speed Ratio of Below One Ghiasi, Pedram; Najafi, Gholamhassan; Ghobadian, Barat; Jafari, Ali
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33169

Abstract

H-type Darrieus vertical axis wind turbines (VAWT) have omnidirectional movement capability and can get more power compared to other VAWTs at high tip speed ratios (𝜆). However, its disadvantages are self-starting inability and low generated power at 𝜆 less than 1. The performance of H-type Darrieus wind turbine at 𝜆<1 was studied using double multiple stream tube (DMST) model and two-dimensional computational fluid dynamic (CFD) simulation. In CFD simulation, the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations were used and the turbulence model was solved with SST k-ω model. The performance of fifteen various wind turbines was determined at fourteen wind velocities by two solution methods. The effect of chord length, solidity, Reynolds number and Height to Diameter (H/D) ratio were investigated on generated torque, power and the time required to reach 𝜆=0.1. Increasing in the moment of inertia due to the increasing in required time to reach 𝜆=0.1. In the low TSRs, the wind turbines can generate higher torque and power in high Re numbers and solidities. The required time was reduced by an increase in Re number and solidity. Finally, the best ratio of H/D of H-type Darrieus wind turbines was defined to improve the turbine performance.
Effect of Power and Time in Pectin Production from Cocoa Pod Husk Using Microwave-Assisted Extraction Technique Sarah, Maya; Hisham, Hisham; Rizki, Mushila; Erwinda, Ricka
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.125-130

Abstract

Investigation on microwave technique to extract pectin from cocoa pod husk in this study carries out using citric acid and hydrochloric acid (HCl). Extraction proceeds at various microwave powers (180, 300, 450, 600 Watt) and irradiation periods (10, 15, 20, 25, 30 minutes). This study observed effect of power and time to yield and quality of pectin.  Yield of pectin increased at elevated power and time either with citric acid or HCl solvent. Overall pectin quality in this study meet the IPPA quality factor exclude water content which relatively higher. MAE treatment with citric acid using microwave power of 300 Watt for 30 minutes resulted yield of 42% and high pectin quality as compare to MAE treatment with HCl. The best pectin product in this study has moisture content of 8%, ash content of 10%, equivalent weight of 714.29 mg, methoxyl content of 4.8% and galacturonate level of 43%. ©2020. CBIORE-IJRED. All rights reserved
Thermal Decomposition and Kinetic Studies of Pyrolysis of Spirulina Platensis Residue Jamilatun, Siti; Budhijanto, Budhijanto; Rochmadi, Rochmadi; Budiman, Arief
International Journal of Renewable Energy Development Vol 6, No 3 (2017): October 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.3.193-201

Abstract

 Analysis of thermal decomposition and pyrolisis reaction kinetics of Spirulina platensis residue (SPR) was performed using Thermogravimetric Analyzer. Thermal decomposition was conducted with the heating rate of 10, 20, 30, 40 and 50oC/min from 30 to 1000oC. Thermogravimetric (TG), Differential Thermal Gravimetric (DTG), and Differential Thermal Analysis (DTA) curves were then obtained. Each of the curves was divided into 3 stages. In Stage I, water vapor was released in endothermic condition. Pyrolysis occurred in exothermic condition in Stage II, which was divided into two zones according to the weight loss rate, namely zone 1 and zone 2. It was found that gasification occurred in Stage III in endothermic condition. The heat requirement and heat release on thermal decomposition of SPR are described by DTA curve, where 3 peaks were obtained for heating rate 10, 20 and 30°C/min and 2 peaks for 40 and 50°C/min, all peaks present in Zone 2. As for the DTG curve, 2 peaks were obtained in Zone 1 for similar heating rates variation. On the other hand, thermal decomposition of proteins and carbohydrates is indicated by the presence of peaks on the DTG curve, where lignin decomposition do not occur due to the low lipid content of SPR (0.01wt%). The experiment results and calculations using one-step global model successfully showed that the activation energy (Ea) for the heating rate of 10, 20, 30, 40 and 50oC/min for zone 1 were 35.455, 41.102, 45.702, 47.892 and 47.562 KJ/mol, respectively, and for zone 2 were 0.0001428, 0.0001240, 0.0000179, 0.0000100 and 0.0000096 KJ/mol, respectively.Keywords: Spirulina platensis residue (SPR), Pyrolysis, Thermal decomposition, Peak, Activation energy.Article History: Received June 15th 2017; Received in revised form August 12th 2017; Accepted August 20th 2017; Available onlineHow to Cite This Article: Jamilatun, S., Budhijanto, Rochmadi, and Budiman, A. (2017) Thermal Decomposition and Kinetic Studies of Pyrolysis of Spirulina platensis Residue, International Journal of Renewable Energy Development 6(3), 193-201.https://doi.org/10.14710/ijred.6.3.193-201
Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review Saleh, Umar Abubakar; Johar, Muhammad Akmal; Jumaat, Siti Amely Binti; Rejab, Muhammad Nazri; Wan Jamaludin, Wan Akashah
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33917

Abstract

The development of renewable energy, especially solar, is essential for meeting future energy demands. The use of a wide range of the solar spectrum through the solar cells will increase electricity generation and thereby improve energy supply. However, solar photovoltaics (PV) can only convert a portion of the spectrum into electricity. Excess solar radiation is wasted by heat, which decreases solar PV cells’ efficiency and decreases their life span. Interestingly, thermoelectric generators (TEGs) are bidirectional devices that act as heat engines, converting the excess heat into electrical energy through thermoelectric effects through when integrated with a PV. These generators also enhance device efficiency and reduce the amount of heat that solar cells dissipate. Several experiments have been carried out to improve the hybrid PV-TEG system efficiency, and some are still underway. In the present study, the photovoltaic and thermoelectric theories are reviewed. Furthermore, different hybrid system integration methods and experimental and numerical investigations in improving the efficiency of PV-TEG hybrid systems are also discussed. This paper also assesses the effect of critical parameters of PV-TEG performance and highlights possible future research topics to enhancing the literature on photovoltaic-thermoelectric generator systems.
An Efficient Algorithm for Power Prediction in PV Generation System Alsafasfeh, Qais
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.207-216

Abstract

Aiming at the existing photovoltaic power generation prediction methods, the modeling is complicated, the prediction accuracy is low, and it is difficult to meet the actual needs. Based on the improvement of the traditional wavelet neural network, a dual-mode cuckoo search wavelet neural network algorithm combined prediction method is proposed, which takes into account the extraction of chaotic features of surface solar radiation and photovoltaic output power. The proposed algorithm first reconstructs the chaotic phase space of the hidden information of each influencing factor in the data history of PV generation and according to the correlation analysis, the solar radiation is utilized as additional input. Next, the proposed algorithm overcomes the limitations of the cuckoo search algorithm such as the sensitivity to the initial value and searchability and convergence speed by dual-mode cuckoo search wavelet neural network algorithm. Lastly, a prediction model of the proposed algorithm is proposed and the prediction analysis is performed under different weather conditions. Simulation results show that the proposed algorithm shows better performance than the existing algorithms under different weather conditions. Under various weather conditions, the mean values of TIC, EMAE and ENRMSE error indicators of the proposed forecasting algorithm were reduced by 43.70%, 45.75%, and 45.41%, respectively. Compared with the Chaos-WNN prediction method, the prediction performance has been further improved under various weather conditions and the mean values of TIC, EMAE and ENRMSE error indicators have been reduced by 25.55%, 27.26%, and 36.83%, respectively. 
Lake Michigan Wind Assessment Analysis, 2012 and 2013 Standridge, Charles R; Zeitler, Daivd; Clark, Aaron; Spoolma, Tyson; Nordman, Erik; Boezaart, T. Arnold; Edmonson, Jim; Howe, Graham; Meadows, Guy; Cotel, Aline; Marsik, Frank
International Journal of Renewable Energy Development Vol 6, No 1 (2017): February 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.1.19-27

Abstract

A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.Article History: Received June 15th 2016; Received in revised form January 16th 2017; Accepted February 2nd 2017 Available onlineHow to Cite This Article: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017) Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development, 6(1), 19-27.http://dx.doi.org/10.14710/ijred.6.1.19-27

Page 7 of 58 | Total Record : 573