Claim Missing Document
Check
Articles

Pengaruh Luas Perpindahan Panas Kondensor Terhadap Volume Asap Cair Terkondensasi Hasil Pirolisis Tempurung Kelapa Jamilatun, Siti; Nurkholis, Nurkholis
CHEMICA: Jurnal Teknik Kimia Vol 3, No 2 (2016): Desember 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (329.414 KB) | DOI: 10.26555/chemica.v3i2.8019

Abstract

One of the products that can be made from coconut shell is making coconut shell carcoal by pyrolysis. In the pyrolysis process also produced liquid smoke, tar and uncondensed gasses. Liquid smoke is a byproduct of the activated charcoal industry has high economic value when compared with discharged into the atmosphere. Liquid smoke is a substance derived from the change of state to a liquid smoke, this process involves a change in the form of process heat transfer to the refrigerant fumes. Liquid smoke obtained simultaneously with the process of making charcoal (carbonization), smoke arising from incomplete combustion piped so that condensation will occur fluid droplets called liquid smoke. For coconut shell weight of 5 kg and 4 pipes condensor, the optimal volume of liquid smoke is 205 ml with a pyrolysis time 90 minutes and the theory of heat transfer surface area 0.076965 m2. For coconut shell weight of 5 kg and 8 pipes condensor, the optimal volume of liquid smoke is 215 ml with a pyrolysis time 90 minutes and the theory of heat transfer surface area 1.027437 m2. For coconut shell weight of 10 kg and 4 pipes condensor, the optimal volume of liquid is 183 ml with a pyrolysis time 300 minutes and the theory of heat transfer surface area 0.060404 m2. For 10 kg weight coconut shell and 8 pipes condensor, the optimal volume of liquid smoke is 205 ml with a pyrolysis time 210 minutes and the theory of heat transfer surface area 0.066801 m2.
KARAKTERISTIK ARANG AKTIF DARI TEMPURUNG KELAPA DENGAN PENGAKTIVASI H2SO4 VARIASI SUHU DAN WAKTU Jamilatun, Siti; Salamah, Siti; Isparulita, Intan Dwi
CHEMICA: Jurnal Teknik Kimia Vol 2, No 1 (2015): Juni 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (337.526 KB) | DOI: 10.26555/chemica.v2i1.4562

Abstract

Activated charcoal is charcoal that has activated for increasing its surface area by opening the pores so that increase the adsorption power. The surface area of the activated charcoal is between 300 and 3500 m2/g. Adsorption power from activated charcoal is very large, i.e. ¼ to 10 times the weight of activated charcoal. Activated charcoal is a good adsorbent for the adsorption of gases, liquids, and solution. Characteristics of activated charcoal which are moisture content, ash content, and absorption of the iodine. Manufacture of activated charcoal begins with soaking for 24 hours using 2N H2SO4 solution, after it was drained and then roasted to remove the remaining water. Moisture content test was doing by weighing 1 gram of activated charcoal and then put it ini the oven at 105-1100C temperature for 120 minutes. Ash content test was by weighing 1 gram of activated charcoal and put in the furnace at a temperature of 5000C for 30 minutes, raise the temperature to 8150C for 90 minutes. Determination of the absorption of iodine is to weigh approximately 0.5 gram of activated charcoal and mix with 50 ml of iodine solution 0,1 N. Shake it for 15 minutes. Take 10 ml of the sample solution and titrate with natrim thio sulfate solution 0.1 N. Adding amylum solution of 1% as an indicator to the titration result becomes colorless.Pada penelitian ini dihasilkan kondisi optimum pada suhu pengovenan 1000oC selama 60 menit. Arang aktif yang didapatkan pada kondisi ini memiliki kemampuan adsorbsi yang baik dengan kadar penyerapan iod yang tinggi sebesar 529,94 mg I2/gram arang.In this research produced the optimum conditions of oven temperature 10000C for 60 minutes. Activated charcoal obtained under these conditions has a good adsorption capability with high levels of iodine absorption of 529.94 mg I2/g charcoal.
Thermal Decomposition and Kinetic Studies of Pyrolysis of Spirulina Platensis Residue Jamilatun, Siti; Budhijanto, Budhijanto; Rochmadi, Rochmadi; Budiman, Arief
International Journal of Renewable Energy Development Vol 6, No 3 (2017): October 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.3.193-201

Abstract

 Analysis of thermal decomposition and pyrolisis reaction kinetics of Spirulina platensis residue (SPR) was performed using Thermogravimetric Analyzer. Thermal decomposition was conducted with the heating rate of 10, 20, 30, 40 and 50oC/min from 30 to 1000oC. Thermogravimetric (TG), Differential Thermal Gravimetric (DTG), and Differential Thermal Analysis (DTA) curves were then obtained. Each of the curves was divided into 3 stages. In Stage I, water vapor was released in endothermic condition. Pyrolysis occurred in exothermic condition in Stage II, which was divided into two zones according to the weight loss rate, namely zone 1 and zone 2. It was found that gasification occurred in Stage III in endothermic condition. The heat requirement and heat release on thermal decomposition of SPR are described by DTA curve, where 3 peaks were obtained for heating rate 10, 20 and 30°C/min and 2 peaks for 40 and 50°C/min, all peaks present in Zone 2. As for the DTG curve, 2 peaks were obtained in Zone 1 for similar heating rates variation. On the other hand, thermal decomposition of proteins and carbohydrates is indicated by the presence of peaks on the DTG curve, where lignin decomposition do not occur due to the low lipid content of SPR (0.01wt%). The experiment results and calculations using one-step global model successfully showed that the activation energy (Ea) for the heating rate of 10, 20, 30, 40 and 50oC/min for zone 1 were 35.455, 41.102, 45.702, 47.892 and 47.562 KJ/mol, respectively, and for zone 2 were 0.0001428, 0.0001240, 0.0000179, 0.0000100 and 0.0000096 KJ/mol, respectively.Keywords: Spirulina platensis residue (SPR), Pyrolysis, Thermal decomposition, Peak, Activation energy.Article History: Received June 15th 2017; Received in revised form August 12th 2017; Accepted August 20th 2017; Available onlineHow to Cite This Article: Jamilatun, S., Budhijanto, Rochmadi, and Budiman, A. (2017) Thermal Decomposition and Kinetic Studies of Pyrolysis of Spirulina platensis Residue, International Journal of Renewable Energy Development 6(3), 193-201.https://doi.org/10.14710/ijred.6.3.193-201
Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues Jamilatun, Siti; Budhijanto, B.; Rochmadi, R.; Yuliestyan, Avido; Hadiyanto, H.; Budiman, Arief
International Journal of Renewable Energy Development Vol 8, No 2 (2019): July 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.2.133-140

Abstract

Today’s needs of energy are yet globally dominated by fossil energy sources, causing the depletion of non-renewable energy. Alternatively, a potential substitute is the energy of biomass. Spirulina platensis (SP) is a microalgae biomass which, if extracted, will produce solid waste called Spirulina platensis residue (SPR). This research explores the pyrolysis product, produced within the range of 300 – 600 ºC, from the pyrolysis of SP and SPR using fixed bed reactors. The influence of temperature on pyrolysis product’s yield and characteristics are investigated by using mass balance method and gas chromatography – mass spectrometry (GC-MS) technique, respectively. The results from mass balance method present an optimum pyrolysis temperature of 550 ºC to obtain the desired liquid product of bio-oil, presenting the percentage of 34.59 wt.% for SP and 33.44 wt.% for SPR case. Additionally, with the increasing temperature, the char yield decreases for about 30 wt.% and the yield of gas seems to sharp increase from 550 to 600 ºC. These tendencies are both applied for SP and SPR source pyrolysis product. Interestingly, the benefit use as fossil fuel substitute might be derived, thanks to high HHV at the bio-oil product (32.04 MJ/kg for SP and 25.70 MJ/kg for SPR) and also at the char product with of 18.85-26.12 MJ/kg for both cases. The additional benefit come from the high content of C in its char product (50.31 wt.% for SPR and 45.26 wt.% for SP) that might be able to be used as an adsorbent, soil softener or other uses in the pharmaceutical field. ©2019. CBIORE-IJRED. All rights reserved
Pemanfaatan Asap Cair Food Grade yang Dimurnikan dengan Arang Aktif sebagai Pengawet Ikan Nila Siti Salamah; Siti Jamilatun
Eksergi Vol 14, No 2 (2017): Eksergi Volume 14 No 2 2017
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v14i2.2027

Abstract

Bau asap serta warna kuning pada asap cair dapat dikurangi dengan penyerapan menggunakan arang aktif. Arang aktif yang telah diaktivasi dapat mengurangi bau dan warna asap cair sebesar 20%. Asap cair tersebut mengalami peningkatan kemampuan pengawetan dengan meningkatnya kadar asam asetat hampir 3 kali lipat. Dalam penelitian ini dilakukan pemanfaatan asap cair food grade yang dimurnikan dengan arang aktif untuk pengawetan bahan makanan yaitu ikan Nila. Percobaan dilakukan dengan mencampurkan arang aktif yang telah diaktivasi dengan asap cair, kemudian diaduk dan disaring. Ikan Nila direndam dalam asap cair yang telah dimurnikan dengan variasi waktu penyimpanan yaitu 3,6,9,12 dan 15 jam. Perlakuan diulang dengan variasi kadar asap cair yaitu 5%,7,5%, 10%, 12,5%, 15% dan 17,5%. Ikan Nila yang telah diawetkan dianalisis kadar protein, jumlah total bakteri, uji fisik dan pH. Dari penelitian ini diperoleh konsentrasi optimum asap cair sebagai pengawet adalah 15%. Kadar protein pada ikan Nila yang direndam menggunakan asap cair selama masa simpan 15 jam adalah 15,15%. Jumlah total bakteri dalam ikan Nila adalah antara 4,5x106 – 5,4x108CFU/ g. Penggunaan asap cair 10% pada ikan Nila mampu mempertahankan kondisi fisik ikan selama waktu simpan 3 jam dengan pH 5. Semakin banyak jumlah total bakteri maka kadar proteinnya semakin rendah.
Sifat-Sifat Penyalaan dan Pembakaran Briket Biomassa, Briket Batubara dan Arang Kayu Siti Jamilatun
Jurnal Rekayasa Proses Vol 2, No 2 (2008)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (908.425 KB) | DOI: 10.22146/jrekpros.554

Abstract

Secara umum, proses pembakaran padatan terdiri atas beberapa tahap yaitu pemanasan, pengeringan, devolatilisasi dan pembakaran arang. Faktor-faktor yang menentukan karakteristik pembakaran suatu briket adalah kecepatan pembakaran, nilai kalor, berat jenis dan banyaknya polusi atau senyawa volatil yang dihasilkan. Penelitian ini bertujuan untuk mengetahui sifat-sifat penyalaan dari berbagai macam briket biomassa, arang kayu dan batubara yang meliputi kecepatan pembakaran, lama briket menyala sampai menjadi abu, waktu penyalaan awal, banyaknya asap atau senyawa volatil yang dihasilkan, nilai kalor dan lama waktu untuk mendidihkan 1 liter air. Penelitian dilakukan dengan membakar 250 gram setiap jenis briket. Hasil penelitian menunjukkan bahwa tempurung kelapa memiliki lama menyala terpanjang yaitu 116 menit dengan kecepatan pembakaran 126,6 gram/detik dan nilai kalor tertinggi sebesar 5.779,11 kal/gram. Untuk mendidihkan 1 liter air, semua jenis briket yang diuji membutuhkan waktu antara 5 sampai 7 menit. Jika dibandingkan dengan briket batubara yang memiliki nilai kalor 6.058 kal/gram dan arang kayu dengan nilai kalor 3.583 kal/gram maka briket tempurung kelapa cukup baik digunakan sebagai bahan bakar alternatif. Kata kunci: briket, biomassa, batubara, uji pembakaran dan nilai kalor In general, combustion of solid material consists of several steps including heating, drying, de-volatilization and burning of the charcoal. The factors that determine combustion characteristics of briquettes are the rate of combustion, heating value, density and amount of pollutants or volatile compounds produced. The present work aimed at determining combustion characteristics of various kinds of briquettes from biomass, wood charcoal and coal including the rate of combustion, duration of briquettes burn to ashes, the initial ignition, amount of smoke or volatile compounds produced, heating value and duration for boiling one liter of water. The experimental work was performed by burning 250 grams of each briquette. The results showed that coconut shell had the longest combustion duration (116 minutes) with a combustion rate of 126.6 grams/second. In comparison with other biomass briquettes and wood choarcoal, coconut shell had the highest heating values of 5,779.11 cal/gram which was close to heating value of coal briquette (6,058 cal/gram). All briquettes studied in the present work showed a reasonable duration and needed about 5 – 7 minutes to boil one litter of water. Key words: briquette, biomass, coal, combustion test and heating values
Biochar from Slow Catalytic Pyrolysis of Spirulina platensis Residue: Effects of Temperature and Silica-Alumina Catalyst on Yield and Characteristics Siti Jamilatun; Ilham Mufandi; Arief Budiman; Suhendra Suhendra
Jurnal Rekayasa Proses Vol 14, No 2 (2020)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.56221

Abstract

The use of biochar varies on its ability as an adsorbent which adsorbs liquid or gas molecules. Biochar from Spirulina platensis residue (SPR) as an energy source, as its richness in nutrients, can be used as fertilizer and maintain water resources in plantations. Biochar can be used as an intermediary for the synthesis of nanotubes, activated carbon, carbon black, and carbon fiber. One of the essential things to be considered in the application of activated carbon from SPR is char’s characteristics. This study aimed to obtain data on the biochar and components from the pyrolysis of Spirulina platensis residue. The study was conducted in a fixed-bed reactor with electric heaters with a variety of temperatures (300-700 ⁰C) and the amount of silica-alumina catalyst (0-20%). The biochar weight was obtained by weighing the char formed at the end of the pyrolysis. The char characteristics were obtained by the surface area, total pore volume, and pore size analysis. Based on the study results, the relationship between temperature and the amount of catalyst on the characteristics of biochar was studied. The higher the pyrolysis temperature, the less biochar. Also, the use of catalysts can reduce the amount of biochar. The higher the temperature, the higher the surface area and the total pore volume while the pore radius was reduced. The optimum condition for maximum biochar yield in non-catalytic pyrolysis at a temperature of 300 ⁰C was 49.86 wt.%. The surface area, the total pore volume, and the pore radius at 700 ⁰C catalytic pyrolysis with 5% silica-alumina was obtained as 36.91 m2/g, 0.052 cm3/g, and 2.68 nm, respectively.Keywords: biochar; pore radius; silica-alumina; surface area; total pore volumeA B S T R A KPenggunaan biochar bervariasi pada kemampuannya sebagai adsorben dalam menjerap molekul cairan atau gas. Biochar dari residu Spirulina platensis merupakan sumber energi, karena kaya akan unsur hara, dapat digunakan sebagai pupuk dan pemeliharaan sumber daya air di perkebunan. Biochar dapat juga digunakan sebagai perantara untuk sintesis nanotube, karbon aktif, carbon black, dan serat karbon. Salah satu hal penting yang harus diperhatikan dalam aplikasi karbon aktif dari SPR adalah karakteristik arang. Penelitian ini bertujuan untuk mendapatkan data biochar dan komponen dari pirolisis residu Spirulina platensis. Penelitian dilakukan di reaktor fixed-bed dengan pemanas listrik dengan variasi suhu (300-700 ⁰C) dan jumlah katalis silika-alumina (0-20%). Berat biochar diperoleh dengan cara menimbang arang yang terbentuk pada akhir pirolisis. Sedangkan karakteristik arang diperoleh dari analisis luas permukaan, volume pori total, dan ukuran pori. Berdasarkan hasil studi hubungan antara suhu dan jumlah katalis terhadap karakteristik biochar yang telah diteliti, semakin tinggi suhu pirolisis maka biochar semakin sedikit. Selain itu, penggunaan katalis dapat mengurangi jumlah biochar. Sebaliknya, semakin tinggi suhu semakin besar luas permukaan, dan volume pori total serta radius pori-pori semakin berkurang. Kondisi optimum untuk biochar maksimum pada pirolisis non katalitik pada suhu  300 ⁰C adalah 49,86 wt.%. Luas permukaan, total volume pori, dan radius pori pada suhu 700 ⁰C untuk pirolisis katalitik silika-alumina 5% diperoleh masing-masing sebesar 36,91 m2/g, 0,052 cm3/g, dan 2,68 nm.Kata kunci: biochar; luas permukaan; radius pori; silika-alumina; total volume pori  
In-Situ Catalytic Pyrolysis of Spirulina platensis residue (SPR): Effect of Temperature and Amount of C12-4 Catalyst on Product Yield Siti Jamilatun; Ratih Mahardhika; Imelda Eka Nurshinta; Lukhi Mulia Sithopyta
Jurnal Rekayasa Proses Vol 15, No 1 (2021)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.60477

Abstract

Currently, dependence on fossil energy, especially petroleum, is still high at 96% of the total consumption. One solution to overcome fossil energy consumption is processing alternative energy sources derived from microalgae biomass. This study aims to study the pyrolysis of microalgae with the addition of the C12-4 (Cr2O3+Fe2O3+C+CuO+promoter) catalyst. The biomass used in this study was Spirulina platensis residue (SPR). This study used a fixed bed reactor with an outer diameter of 44 mm, an inner diameter of 40 mm, and a total reactor height of 600 mm. The C12-4 was mixed fifty grams of SPR with a particle size of 100 mesh with a ratio variation of 5, 10, and 15 wt.%. The feed mixture was placed in the reactor (in-situ), and the reactor was tightly closed. The nickel-wire heater wrapped around the reactor wall was employed. The pyrolysis heating rate was  24.33 °C/min on average, and the temperatures were varied as 300, 400, 500, 550, and 600 °C. The research found that the optimum temperature conditions without and with the catalyst to produce bio-oil were different. The pyrolysis without any catalyst (500 ⁰C), with a catalyst of 5 wt.% (500 ⁰C), 10 wt.% (400 ⁰C), and 15 wt.% (550 ⁰C) produced the bio-oil yield of 15.00, 17.92, 16.78 and 16.54, respectively. The use of 5, 10, and 15 wt.% catalysts increased the water phase yield. The char yield was influenced by the amount of catalyst only at 300 ⁰C; i.e., the more catalysts, the less char yield. The pyrolysis without any catalysts produced the highest gas product. A catalyst significantly increased the pyrolysis conversion from 48.69 (without catalyst) to 62.46% (15. wt.% catalyst) at a temperature of 300 ⁰C. The optimum conditions for producing the best bio-oil were at 600 °C and 10 wt.% of catalysts, which resulted in an O/C ratio of 0.14.Keywords: C12-4 catalyst, in-situ catalytic pyrolysis, Spirulina platensis residue, yield bio-oilA B S T R A KKetergantungan terhadap energi fosil khususnya minyak bumi, saat ini masih tinggi yaitu mencapai 96% dari total konsumsi. Salah satu solusi untuk mengatasi ketergantungan energi fosil adalah dengan mengolah sumber energi yang berasal dari biomassa mikroalga. Penelitian ini bertujuan untuk pirolisis mikroalga dengan penambahan katalis C12-4 (Cr2O3 + Fe2O3 + C + CuO + promotor). Sampel yang digunakan adalah residu Spirulina platensis (SPR). Penelitian ini menggunakan reaktor unggun tetap dengan diameter luar 44 mm, diameter dalam 40 mm, dan tinggi reaktor 600 mm. Spirulina platensis dengan ukuran partikel 100 mesh sebanyak 50 gram dicampur dengan katalis C12-4 dengan variasi 5, 10, dan 15 wt.%. Campuran umpan (in-situ) dimasukkan ke dalam reaktor dan ditutup rapat. Pemanas menggunakan arus listrik melalui kawat nikel yang dililitkan pada dinding reaktor. Laju pemanasan pirolisis rata-rata 24,33 °C/menit, variasi suhu 300, 400, 500, 550, dan 600 °C. Kondisi optimum tanpa dan dengan katalis untuk menghasilkan bio-oil memiliki nilai yang berbeda yaitu pirolisis tanpa katalis (500 ⁰C), dengan katalis 5 wt.% (500 ⁰C), 10 wt.% (400 ⁰C) dan 15 wt.% (550 ⁰C) menghasilkan bio-oil 15,00; 17,92; 16,78; dan 16,54. Penggunaan katalis 5, 10, dan 15 wt.% berat dapat meningkatkan fasa air hasil. Yield char dipengaruhi oleh jumlah katalis hanya pada 300 ⁰C, semakin banyak katalis maka yield char semakin menurun. Pirolisis tanpa katalis menghasilkan produk gas tertinggi. Penggunaan katalis sangat signifikan dalam meningkatkan konversi pirolisis dari 48,69 (tanpa katalis) menjadi 62,46% (katalis 15 wt.%) pada suhu 300 ⁰C. Kondisi optimum untuk menghasilkan minyak nabati terbaik adalah pada 600 °C dengan katalis 10% berat, menghasilkan rasio O/C sebesar 0,14.Kata kunci: C12-4 catalyst, in-situ catalytic pyrolysis, Spirulina platensis residue, yield bio-oil
KARAKTERISTIK ARANG AKTIF DARI TEMPURUNG KELAPA DENGAN PENGAKTIVASI H2SO4 VARIASI SUHU DAN WAKTU Siti Jamilatun; Siti Salamah; Intan Dwi Isparulita
CHEMICA: Jurnal Teknik Kimia Vol 2, No 1 (2015): Juni 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (337.526 KB) | DOI: 10.26555/chemica.v2i1.4562

Abstract

Activated charcoal is charcoal that has been activated for increasing its surface area by opening the pores so increases the adsorption power. The surface area of the activated charcoal is between 300 and 3500 m2/g. Adsorption power from activated charcoal is very large, i.e. ¼ to 10 times the weight of activated charcoal. Activated charcoal is a good adsorbent for the adsorption of gases, liquids, and solutions. Characteristics of activated charcoal are moisture content, ash content, and absorption of the iodine. Manufacture of activated charcoal begins with soaking for 24 hours using 2N H2SO4 solution after it was drained and then roasted to remove the remaining water. Moisture content test was done by weighing 1 gram of activated charcoal and then put it in the oven at 105-1100C temperature for 120 minutes. Ash content test was by weighing 1 gram of activated charcoal and put in the furnace at a temperature of 5000C for 30 minutes, raise the temperature to 8150C for 90 minutes. Determination of the absorption of iodine is to weigh approximately 0.5 grams of activated charcoal and mix it with 50 ml of iodine solution 0.1 N. Shake it for 15 minutes. Take 10 ml of the sample solution and titrate with natrium thiosulfate solution 0.1 N. Adding amylum solution of 1% as an indicator to the titration result becomes colorless.This research produced the optimum conditions of oven temperature 10000C for 60 minutes. Activated charcoal obtained under these conditions has a good adsorption capability with high levels of iodine absorption of 529.94 mg I2/g charcoal.
Activation of Coconut Shell Charcoal and Application for Bleaching Used Cooking Oil Siti Jamilatun; Martomo Setyawan; Lutfiatul Janah; Rifka Alfiyani; Ilham Mufandi
CHEMICA: Jurnal Teknik Kimia Vol 8, No 1 (2021): June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/chemica.v8i1.20085

Abstract

This study aimed to determine coconut shell-activated charcoal's ability in the bleaching process of used cooking oil. Activation of coconut shell charcoal was carried out using 5N H2SO4 solution. Activated charcoal is made through a pyrolysis process at a temperature of 350 ⁰C for 1 hour. The experiment was carried out in four stages: activation of activated charcoal, testing the characteristics of activated charcoal, bleaching used cooking oil, and testing the characteristics of used cooking oil. The characteristic test of activated charcoal is moisture content, ash content, and iodine absorption rate. Meanwhile, used cooking oil characteristics were carried out in water content, specific gravity, and color test. The results showed that the ash content of activated charcoal was 2.4-2.8 %, the water content of activated charcoal was 0.5-1%, the iodine absorption content was relatively high, namely 371,896-548,745 mg/g. The water content of used cooking oil was 0.493-0.503 %, the specific gravity of used cooking oil was between 0.888-0.892 %, and the absorbance was between 0.001-0.006. The results of this study were standardized using the Indonesian National Standard Method (SNI). The results show that 40 mesh of activated charcoal is better than 20 mesh.
Co-Authors Adhi Chandra Purnama Adi Permadi, Adi Agus Aktawan, Agus Alfian Ma’arif Amelia, Shinta Anak Agung Istri Sri Wiadnyani Anggun Puspitasari Anisa Salsabila Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arief Budiman Arifah, Zulia Aster Rahayu Aster, Rahayu Auliasari, Putry Ayu Avido Yuliestyan Budhijanto Budhijanto Budhijanto Budhijanto, Budhijanto Budhijanto, B. Defiani Putri Denanti Dhias Cahya Hakika Dhias Cahya Hakika Dhias Cahya Hakika Dita Permata Putri Dwi Astri Ayu Purnama Dwi Astri Ayu Purnama Dwita Sarah Efi Nopianti Eka Noviana Elies Permatasari Eling Widya Suminar Eliyantini Erna Astuti Eva Nurdiana Putri Fajriansya Gonibala Febriani, Annisa Vada Firanita Anggraini H Hadiyanto Hadi Nasbey Hanum, Farrah Fadhillah Hanum, Farrah Hanum Hapsauqi, Iqbal Heidy Oktavia Nisa Ikko Nirwana Luthfiani Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Ilham Mufandi Imelda Eka Nurshinta Imelda Ika Nurshinta Intan Dwi Isparulita Irfan Maulana Putra Irwan Mulyadi Isparulita, Intan Dwi Joko Pitoyo Joko Pitoyo Joko Pitoyo Joni Aldilla Fajri Karmila Astuti Lee Wah Lim Lia Aslihati Lukhi Mulia Shitophyta Lukhi Mulia Sithopyta Lukman Hakim Lutfiatul Janah M. Idris Martomo Setyawan Maryudi Maryudi Maya Fadilah Muhammad Aziz Muhammad Haryo Setiawan Muhammad Nufail Syafii Muhtadin, Akhmad Sabilal Muthadin , Akhmad Sabilal Mutia Endar Nurhidayah Nabila Fauzi Nafira Alfi Zaini Amrillah Nihanzah, Ardian Surya Putra Nirmalasari, Jiran Nur Aini Aini Nur Kholis Nuraini Nuraini Nurmustaqimah Nurmustaqimah, Nurmustaqimah Nurmustaqimaha, Nurmustaqimaha Nurmutaaqimah Putri, Firanita Angraini Rahayu Aster Rahayu, Aster Ratih Mahardhika Remmo Sri Ardiansyah Resyaldi Pratama Rhomadoni, Firda Rizki Ria Rosania Rifka Alfiyani Ririn Martina Riska Setyarini Riska Utami Melani Putri Riska Utami Melani Putri Rochmadi Rochmadi Rochmadi Rochmadi Rochmadi, R. Rosdamayanti Salsabila, Anisa Setya Wardhana, Budi Setyarini , Riska Shafa Zahira Shinta Amelia Shinta Amelia Shitopyta, Lukhi Mulia Siti Hartini Siti Nurhalizatul Aini Siti Salamah Siti Salamah Soedjatmiko Sofiana, Nurani Sri Ardiansyah, Remmo Sriyana, Ida Suhendra Suhendra Suhendra Taufiqurahman , Muhamad Akmal Totok Eka Suharto Tyas Aji Kurniawan Utaminingsih Linarti, Utaminingsih Veranica Veranica W, Mila Utami Wardhana, Budi Setya Yeni Elisthatiana Yesi Yuniasari Yona Desni Sagita Zahira, Shafa Zahrul Mufrodi Zahrul Mufrodi, Zahrul Zulia Arifah Zulia Arifah