cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
KAPAL Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Published by Universitas Diponegoro
ISSN : 18298370     EISSN : 23019069     DOI : 10.14710/kapal.
Core Subject : Science,
Jurnal ini merupakan Jurnal Ilmiah untuk mengembangkan ilmu dibidang Ilmu Pengetahuan & Teknologi Kelautan. Jurnal ini diterbitkan oleh Teknik Perkapalan Universitas Diponegoro 3 (tiga) kali dalam 1 tahun pada bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 8 Documents
Search results for , issue "Vol 17, No 1 (2020): February" : 8 Documents clear
Evaluation of Boat Lifting System Using A Multiple-Drum Winch Asmara, I Putu Sindhu; Yudo, Hartono
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2069.636 KB) | DOI: 10.14710/kapal.v17i1.26425

Abstract

Material handling equipment is designed or selected based on two factors, the aspects of technical and economic. Technical aspects of a boatlift are designated by technical specifications that can meet with the need to lift and move a boat from land to waterway and vice versa. Boatlift is a type of Rubber Tyred Gantry crane specifically designed for moving of small craft, small and medium vessels with a capacity of 10 tons to 600 tons. Boatlift with a capacity of 5 tons is very rarely to find and very different from other types of cranes such as overhead cranes that are easy to find. Boatlift with a capacity of 5 tons can be found at the Shipbuilding Institute of Polytechnic Surabaya, but it has a weakness. The boats experience an un-synchronize movement during the lifting process. This article provides the design of a boatlift pulley system with a capacity of 5 tons using a multiple-drum winch and is capable of lifting the boat at an even keel condition. The evaluation was carried out on the existing system to find the cause of the problem. The correction on the pulley system of the boatlift has been recommended without the replacement of wire rope, brakes, motor, and the multiple-drum of the winch. The weaknesses of boat lifting could be overcome by using a pulley system 8/2/2/1-DeBe + spreader.
Front-Matter V. 17, No. 1 Muhammad Iqbal
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (470.533 KB)

Abstract

An Analysis on the Spread Mooring of the Belida FSO Induced by Squall Loads Murdjito, M; Pravitasari, Inneke Yulistanty; Djatmiko, Eko Budi
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4655.093 KB) | DOI: 10.14710/kapal.v17i1.27554

Abstract

Squall is the occurrence of a sudden sharp increase in wind speed, thus amplifies sea environmental loads. In the South of Natuna Sea, squall can reach an intensity of up to 50 m/s or close to 100 knots. In this water, the Belida FSO operates at a water depth of 77.0 m, tethered to the seabed by a spread mooring system. Squall’s impacts on the FSO mooring system has been examined by implementing time-domain simulations accommodated in a numerical model based on the 3-D wave diffraction theory. The simulations were performed by varying the squall duration of escalation, i.e. 2.5, 5.0, and 10.0 minutes, for the load cases of 1-year extreme operational and 100-year extreme survival conditions propagating at 0°, 45°, 90°, 135°, 180°. The three squall durations of escalation substantially increase the significant wave height Hs by averagely 60%, 50% and 34%, respectively. The largest of the maximum mooring tension due to the sea load directions is found to be brought about the 45° load when magnified by the squall with a 2.5-minute duration of escalation. In this respect, the largest intensities of the operational and survival tension loads may reach some 2,027 kN and 3,318 kN, respectively, which are eventually far below the MBL of 7,685 kN. The largest x-axis offsets in operational and survival conditions are 3.94 m and 10.21 m, respectively. Whereas the largest y-axis offsets for operational and survival loads are found to be 13.31 m and 15.48 m. These y-axis offset intensities are larger than the limiting criteria, i.e. 15% of the water depth or 11.55 m.
Cover V. 17, No. 1 Muhammad Iqbal
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (430.932 KB)

Abstract

Design of River Tour Boat’s Hull For Taman Nasional Tanjung Puting, Central Borneo Danu Utama; Ahmad Nasirudin; Muhammad Iqbal
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3280.63 KB) | DOI: 10.14710/kapal.v17i1.28007

Abstract

Tanjung Puting National Park is a natural wildlife park with a positively increasing trend in the number of visitors. The transportation which is utilized in Sekonyer river is ‘klotok’ boat, a traditional tour boat modified from a fishing boat. The design of a fiberglass-based tour boat is needed to accommodate the limitation of Kalimantan’s logs, which become the main structural components of klotok and to comply with the technical characteristic of the river. The purpose of this study is to obtain the optimum main dimensions of the fiberglass-based tour boat and its hull form design. The method performed to obtain the main dimension of the boat is non-linear optimization with the help of solver in Microsoft Excel software. The process of boat’s hull design is done by line distortion approach where the shape of a reference boat’s hull is conformed to a particular size and hydrodynamical coefficients, which are obtained from the optimization process. The result of optimization process is the main dimension of the boat (Lpp = 12.23 m, B = 2.70 m, H = 1.14 m, T = 0.80 m and Cb = 0.55). By conducting a series of calculations, the obtained value of the total boat’s resistance worths 2,427 N. Therefore, the number of boat’s power needed is less than the power of existing boats. The boat’s hull also complies with technical requirements and regulations, which are freeboard and intact stability.
Estimation of Effective Wave Slope Coefficient of Ships with Large Breadth and Draught Ratio Paroka, Daeng; Muhammad, Andi Haris; Rahman, Sabaruddin
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2729.505 KB) | DOI: 10.14710/kapal.v17i1.28399

Abstract

One of parameters to estimate heel angle of a ship in beam seas is effective wave slope coefficient. In the weather criterion of IMO, the effective wave slope coefficient is determined as function of ratio between distance of center of gravity from the sea surface and the ship draught. The others methods could be used to estimate the effective wave slope coefficient are simplified strip theory and model experiment. A ship with shallow draught and large vertical center of gravity can have an effective wave slope coefficient larger than 1.0 if the coefficient is calculated by using the formulae of weather criterion. Therefore, an alternative method to estimate the coefficient is necessary when it is applied to ships with geometry characteristics different with those used to develop the formulae. This research conducts to estimate the effective wave slope coefficient using three different methods, namely the formulae of weather criterion, the simplified strip theory and model experiment. Results of the three methods may provide enough evidence about suitable method to estimate the effective wave slope coefficient of ships with breadth and draught ratio larger than 3.5 like the Indonesian ro-ro ferries. Results and discussion show that the effective wave slope coefficient obtained by using the formulae of weather criterion is larger compared to that obtained by using the simplified strip theory and the model experiment. Here, the result of simplified strip theory for wave frequency the same as the roll natural frequency of subject ship is similar with the result of model experiment. This results show that the simplified strip theory can be used as an alternative method to determine the effective wave slope of a ship with breadth and draught ratio larger than 3.5 if the result of model experiment does not available.
Hybrid Propulsion System (PV / Gasoline) For Small Fishing Vessels Sultoni, Arif Indro; Ali, M. Marhaendra; Aji, Zaenal Panutup
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1892.28 KB) | DOI: 10.14710/kapal.v17i1.25613

Abstract

The mechanism of hybrid (PV+gasoline) for fishing vessel propulsion was aimed to reduce fuel consumption.  The background of this research is lots of vessels not going for fishing because of a lack of fuel. With the hybrid mechanism, the fishing vessels could less fuel consumption without decreases its performance (torsion, power durability, and velocity) when cruising. In this paper, a parallel hybrid (PV/gasoline) is proposed. The gasoline generator will deliver power to DC motor if PV energy that stored to the battery not enough as the requirement of propeller propulsion. Hybrid design for a 3-ton overall weight of fishing vessel was designed with eight-unit solar panels @200 WP arranged as four string-2 series. Li-Ion battery pack with 4.5 KWH of capacity was used as energy storage. The simulation shows that the hybrid scheme can preserve the vessel speed at 16 Km per hour with time duration in 12 hours 46 minutes and needs 4 hours 10 minutes for full battery charging by a gasoline generator.
Back-Matter V. 17, No. 1 Muhammad Iqbal
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 17, No 1 (2020): February
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2053.791 KB)

Abstract

Page 1 of 1 | Total Record : 8


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 23, No 1 (2026): Article in Press Vol 22, No 3 (2025): October Vol 22, No 2 (2025): June Vol 22, No 2 (2025): Article in Progress (Accepted Papers) Vol 22, No 1 (2025): February Vol 21, No 3 (2024): October Vol 21, No 2 (2024): June Vol 21, No 1 (2024): February Vol 20, No 3 (2023): October Vol 20, No 2 (2023): June Vol 20, No 1 (2023): February Vol 19, No 3 (2022): October Vol 19, No 2 (2022): June Vol 19, No 1 (2022): February Vol 18, No 3 (2021): October Vol 18, No 2 (2021): June Vol 18, No 1 (2021): February Vol 17, No 3 (2020): October Vol 17, No 2 (2020): June Vol 17, No 1 (2020): February Vol 16, No 3 (2019): Oktober Vol 16, No 2 (2019): Juni Vol 16, No 1 (2019): Februari Vol 15, No 3 (2018): Oktober Vol 15, No 2 (2018): Juni Vol 15, No 1 (2018): Februari Vol 14, No 3 (2017): Oktober Vol 14, No 2 (2017): Juni Vol 14, No 1 (2017): Februari Vol 13, No 3 (2016): Oktober Vol 13, No 2 (2016): Juni Vol 13, No 1 (2016): Februari Vol 12, No 3 (2015): Oktober Vol 12, No 2 (2015): Juni Vol 12, No 1 (2015): Februari Vol 11, No 3 (2014): Oktober Vol 11, No 2 (2014): Juni Vol 11, No 1 (2014): Februari Vol 10, No 3 (2013): Oktober Vol 10, No 2 (2013): Juni Vol 10, No 1 (2013): Februari Vol 9, No 3 (2012): Oktober Vol 9, No 2 (2012): Juni Vol 9, No 1 (2012): Februari Vol 8, No 3 (2011): Oktober Vol 7, No 3 (2010): Oktober Vol 7, No 2 (2010): Juni Vol 7, No 1 (2010): Februari Vol 6, No 2 (2009): Juni Vol 5, No 3 (2008): Oktober Vol 5, No 2 (2008): Juni Vol 5, No 1 (2008): Februari Vol 4, No 1 (2007): Februari Vol 3, No 3 (2006): Oktober More Issue