cover
Contact Name
Fransiskus Panca Juniawan
Contact Email
Fransiskus Panca Juniawan
Phone
-
Journal Mail Official
fransiskus.pj@atmaluhur.ac.id
Editorial Address
-
Location
Kota pangkal pinang,
Kepulauan bangka belitung
INDONESIA
Jurnal Sisfokom (Sistem Informasi dan Komputer)
ISSN : 23017988     EISSN : 25810588     DOI : -
Jurnal Sisfokom merupakan singkatan dari Jurnal Sistem Informasi dan Komputer. Jurnal ini merupakan kolaborasi antara sivitas akademika STMIK Atma Luhur dengan perguruan tinggi maupun universitas di Indonesia. Jurnal ini berisi artikel ilmiah dari peneliti, akademisi, serta para pemerhati TI. Jurnal Sisfokom diterbitkan 2 kali dalam setahun yaitu pada bulan Maret dan September. Jurnal ini menyajikan makalah dalam bidang ilmu sistem informasi dan komputer.
Arjuna Subject : -
Articles 669 Documents
Systematic Literature Review: Machine Learning Methods in Emotion Classification in Textual Data Wibawa, Putu Widyantara Artanta; Pramartha, Cokorda
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 12, No 3 (2023): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v12i3.1787

Abstract

Emotions are a person's response to an event. Emotions can be expressed verbally or nonverbally. Over time people can express their emotions through social media. Considering that emotion is a reflection of society's response, it is important to classify emotions in society to find out the community's response as information for consideration in decision-making. This study is aimed to identify and analyze the datasets, methods, and evaluation metrics that are being used in the classification of emotional texts in textual data from research data from 2013 to 2022. Based on the inclusion and exclusion design in selecting literature, a total of 50 kinds of literature were used in extracting and synthesizing data. Analysis of the data shows that out of 50 pieces of literature, there are 36 works of literature that use public datasets while 14 kinds of literature use private datasets. In the method of developing models for classifying, the SVM and Naive Bayes models are the most popular among the other models. In evaluating the model, the F-measure or F1-score metric is the most widely used metric compared to other metrics. There are three main contributions identified in this study, namely methods, models, and evaluation
Analysis of Behavioral Use of Academic Information Systems with the Implementation of UTAUT 2 Integration at the Muhammadi-Palembang Institute of Health Science and Technology Donan, Hendri; Negara, Edi Surya Negara Surya; Sutabri, Tata; Firdaus, Firdaus
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 12, No 3 (2023): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v12i3.1978

Abstract

The utilization of Information Technology (IT) in higher education setting aims to enhance the quality of education, and this initiative is realized through the implementation of Information Technology at the Institute of Health Sciences and Technology Muhammadiyah Palembang (IKesT MP) in the form of an Academic Information System (SIMAKAD). SIMAKAD is a vital role as a tool to manage internal data and serves as an information hub for students. This research is conducted to evaluate the acceptance level of the UTAUT2 model and the impact of both the main and target variables within the UTAUT2 model. This research utilizes a quantitative method with 150 respondents, analyzed using SMART PLS 3.0 software." software. The research findings indicate that the acceptance level of the UTAUT2 model reaches 74%, signifying a high adoption rate. Variables like Perceived Value (p-Value: 0.019) and Habit (p-Value: 0.009) significantly influence Behavioral Intention, with a p-Value 0.05, indicating that their hypotheses are accepted. On the other hand, variables such as Performance Expectancy (p-Value: 0.660), Effort Expectancy (p-Value: 0.417), Social Influence (p-Value: 0.652), and Facilitating Conditions (p-Value: 0.292) There is no substantial influence on Behavioral Intention as a result of using Information Technology (IT), indicating that their hypotheses have not been endorsed.. Additionally, the variable Hedonic Motivation (p-Value: 0.978) also does not can significantly impact one's inclination toward a  behavior Intention. However, variables Facilitating Conditions (p-Value: 0.000) and Behavioral Intention (p-Value: 0.000) have a positive impact on Use Behavior, indicating that their hypotheses are accepted. Conversely, the variable Habit (p-Value: 0.915) Does not exert a significant impact on Uss Behavior, resulting in the rejection of its hypothesis.
Forecasting the Electricity Consumptions of PLN UP3 Cengkareng using Deep Learning Dewi, Novia; Riwurohi, Jan Everhard
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.1849

Abstract

The consumption of electrical energy for the community every year has increased including the electricity consumption of PLN UP3 Cengkareng customers. Therefore, PLN UP3 Cengkareng must supply electricity to customers in all categories such as Social Category, Household Category, Business Category, Industry Category and Government Category. With customer needs that continue to increase, it is necessary to forecast future electricity needs, so that PLN UP3 Cengkareng can provide the required electrical power. For this reason, it is necessary to predict the electricity demand. This research was conducted to forecast the electricity demand of UP3 Cengkareng by using the Deep Learning Model Long Short-Term Memory (LSTM). The data set used in this study was taken from the PLN UP3 Cengkareng information system, for 10 years, the period from 2012 to 2021. The data used is divided into 2 categories, namely 70% training data and 30% testing data. The results obtained from this prediction are 96,689, with an average neuron value of 32 and an epoch value of 10.
Impact of The Covid-19 Pandemic on Student Learning Styles: Naïve Bayes and Decision Tree Classification in Education Kurniawan, Zaqi; Tiaharyadini, Rizka
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.1950

Abstract

The Covid-19 pandemic significantly changed education with social distancing and changes in the learning environment. In this study, one strong reason for the significance of the research is the urgency of changes in students' learning styles during the Covid-19 pandemic. Investigating differences in learning styles before and during the pandemic not only provides deep insight into students' adaptation to these changes, but also provides a foundation for the development of more inclusive and adaptive learning strategies in the future. This study aims to analyze the effect of the Covid-19 pandemic on students' learning styles in an educational context, focusing on the comparison of two classification methods, Naïve Bayes and Decision Tree. The study was conducted by collecting data on students' learning styles before and during the Covid-19 pandemic, using various relevant indicators. The data was obtained based on school survey results and online platforms, involving student characteristics and learning preferences. The data was then analyzed using Naïve Bayes and Decision Tree classification methods to identify significant changes in students' learning styles. The results showed the prediction accuracy of learning style changes with Naïve Bayes 68.75% and Decision Tree 87.50%. Recommendations for educators and education policy makers are to develop inclusive and adaptive learning strategies to meet diverse learning preferences. 
Classification Comparison Performance of Supervised Machine Learning Random Forest and Decision Tree Algorithms Using Confusion Matrix helmud, ellya; Fitriyani, Fitriyani; Romadiana, Parlia
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.1985

Abstract

The classification method is part of data mining which is used to predict existing problems and also as predictions for the future. The form of dataset used in the classification method is supervised data. The random forest classification method is processed by forming several decision trees and then combining them to get better and more precise predictions. while a decision tree is the concept of changing a pile of data into a decision tree that presents the rules of a decision. From these two classification methods, researchers will compare the level of accuracy of predictions from both methods with the same dataset, namely the employee dataset in India, to predict the level of accuracy of employees who leave their jobs or still remain to work at their company. The number of records available is 4654 records. Of the existing data, 90% was used as training data and 10% was used as test data. From the results of testing this method, it was found that the accuracy level of the random forest method was 86.45%, while the decision tree method was 84.30% accuracy level. Then, by using the confusion matrix, you can see the magnitude of the distribution of experimental validity visually to calculate precision, recall and F1-Score. The random forest algorithm obtained precision of: 96.7%, sensitivity of: 84.7%, specificity of: 91.4%, and F1-Score of: 90.2%. Meanwhile, the decision tree algorithm obtained precision of: 95.7%, sensitivity of: 82.9%, specificity of: 88.4%, and F1-Score of: 88.8%.
Strategy for improving and empowering MSMEs through grouping using the AHC method Zahrotun, Lisna; Amanatullah, Yosyadi Rizkika; Linarti, Utaminingsih; Soleliza Jones, Anna Hendry
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 1 (2024): MARET
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i1.2021

Abstract

The high number of migrants in the city of Yogyakarta has resulted in increased opportunities for Micro, Small and Medium Enterprises (MSMEs) in Culinary and Handicrafts. The large amount of data collected by the Cooperative Office, which reached thousands, caused inas to have difficulties in determining what training was needed by MSMEs and also difficulties in choosing which MSMEs would receive training held by the Cooperative Office. In addition, the Yogyakarta Cooperatives and UMKM Office had difficulties in selecting which UMKM needed to receive these trainings. Grouping can be used as a strategy in selecting MSMEs and determining training according to their individual needs. The purpose of this study was to group SMEs using the Agglomerative Hierarchical Clustering Single Linkage method and its application to provide recommendations for MSME groups to the Yogyakarta Cooperative and MSME Office. The results of the recommendations for the number of groups can be used in providing implementation, design, and evaluation of the development and empowerment of MSME data in the City of Yogyakarta. This study uses the Agglomerative Hierarchical Clustering Single Linkage method. The stages in this research are Load Data, Cleaning Data, Data Selection, Transformation Data, Clustering Process with AHC single linkage, Silhouette Coefficient, and Knowledge Representation. This research resulted in 2 group recommendations from a total of 1336 Culinary MSME data and 3 group recommendations from a total of 145 Handicraft MSME data. The results of the silhouette score test in the Culinary Sector are included in the strong structure category with a value of 0.79 and the Crafts Sector is included in the Medium Structure category with a value of 0.615. From the number of these groups, recommendations were obtained for improving a service in increasing MSMEs, especially those with a turnover of less than 10 million, marketing purposes within the Yogyakarta area, and not having financial assistance from the government. The high number of immigrants in the city of Yogyakarta has resulted in increased opportunities for Micro, Small and Medium Enterprises (MSMEs) in the Culinary and Crafts sector. The large number of MSMEs creates increasingly higher competitiveness. Apart from that, the large amount of data collected by the Department of Cooperatives and MSMEs, which reaches thousands, causes the Department to have difficulties in efforts to improve and empower these MSMEs. Grouping is one method that can be used as a strategy in mapping MSMEs, especially in efforts to improve and empower MSMEs through training conducted by the Department. The aim of this research is to group MSMEs using the Agglomerative Hierarchical Clustering (AHC) method in an effort to achieve strategies for improving and empowering MSMEs. The focus of this research is[a1]  MSMEs in the craft sector and MSMEs in the culinary sector. The results of this research provide 2 group recommendations from a total of 1336 Culinary MSME data and 3 group recommendations from a total of 145 Craft MSME data. The silhouette score test results in the Culinary Sector are in the strong structure category with a value of 0.79 and in the Crafts Sector are in the Medium Structure category with a value of 0.615. From the number of groups in the two MSMEs, strategies were obtained to improve and empower MSMEs, especially those with a turnover of less than 10 million, marketing objectives within the Yogyakarta area, and not having capital assistance from the government.  [a1]the result of the revision of the Abstract
Double Exponential Smoothing Forecasting Food Crop Yields Using Geographic Information Systems Pirmanto, Dovel
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2069

Abstract

Food is a source of basic needs for every living creature, so food security is an interesting issue for every country. This raises problems regarding food and land use, especially in Sungai Penuh City. Food problems arise due to a lack of information regarding appropriate land use and the productivity of the land itself. In the current industrial era 4.0, forecasting can be done using information technology tools that provide convenience and efficiency in forecasting times and can be integrated with geographic information systems. The forecasts made by the community are based on past experience without considering the factors that influence crop yields, so that they can cause losses both in terms of time and costs. Apart from that, less accurate predictions of food yields can lead to less than optimal development of food security which has an impact on meeting food needs. This research involved respondents from the Department of Agriculture and Food Security, namely agricultural and food experts. The method for collecting data in this research is observation and interviews. This research analyzes harvest data for the 2018-2023 period sourced from the Central Statistics Agency using the Double Exponential Smoothing method by considering error values with α = 0.1 and 0.5 and β = 0.1 and 0.5. The calculation of the smallest error value is: ME = 80.92, MAD = 5.58, MAPE = 11%, MSE = 52.69 by combining the value of α= 0.1 and the value of β = 0.1 to produce a prediction of the corn harvest in Kumun Debai District in 2024 of 45 tons and year 2025 as much as 40 tons.
Comparison Between Usability and User Acceptance Testing on Educational Game Assessment Vanesha, Nellya Anggun; Rizky, Rizky; Purwanto, Agus
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2099

Abstract

User Acceptance Testing (UAT) and Usability Testing are two methods commonly used in evaluating software or systems. UAT is concerned with overall system acceptance, while Usability Testing is specifically aimed at assessing the user's experience in interacting with the product. These two testing methods play an important role in ensuring the quality and user satisfaction of software and systems. Including being used to evaluate the Little Panda's Forest Animals game against 106 respondents consisting of two different campuses. The purpose of this research is to see the comparison between Usability Testing and User Acceptance Testing. With the research stages of literature review, questionnaire creation, data collection, data processing, and conclusions. The results of data processing show that there are differences in results where Usability Testing gets a lower score than User Acceptance Testing. Usability Testing results received an assessment range of 65 - 84 with the Usability statement being acceptable to users, while User Acceptance Testing received a range of 81% - 100% with the score interpretation criteria being very good.
Project Management on Network and Security Development using the PMBOK Method Iqbal, Aldy Mercyano; Setiadi, Indra Tresna; Samidi, Samidi
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2131

Abstract

HOSPITAL ABC is one of the companies that operates in the healthcare sector. In the construction of the hospitals, must be supported by the implementation of technology, especially network technology so that all operational devices in the hospital can be connected and communicate with each other, while still paying attention to the security factor on the network. Based on this, project management is needed in network and security development at the hospital to be built so that the development can be following the timeline and meet the expectations of all stakeholders. With the use of the PMBOK approach for network development and security in hospitals, every phase has very important activities and is related to other activities. Besides that, by using the PMBOK approach can also find out which parts are challenges in project implementation. In this project, the process of procuring/ordering devices, storing devices, and physically checking devices with BAST are critical parts and require more attention so that the project can run according to the specified time.
Does The Lecturers’ Innovativeness Drive Online-Learning Adoption in Higher Education? A Study based on Extended TAM Purwandari, diah; Saparudin, Mohamad; Wulan, Mulyaning; Akbari, Deni Adha; Kania, Azzura
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2122

Abstract

Adoption and intention to use online learning is a developing area of education research. Despite a large body of research on online learning acceptance, more is needed to know about the factors that impact lecturers' intentions to continue utilizing online learning. The purpose of this study is to give empirical evidence regarding the acceptance of online learning. The proposed model is based on the technology acceptance model (TAM). Several hypotheses were created using the TAM Model, utilizing lecturers' personal innovativeness as an external varaibel. This study used structural equation modeling (SEM-PLS) to investigate technology use among 180 lecturers. The findings suggested that the proposed model accurately predicted the desire to continue using e-learning. Lecturers' innovativeness had a significant impact on perceived usefulness (PU), perceived ease of use (PEOU), and intention to continue using e-learning. Perceived usefulness was the most important factor influencing the intention to continue using e-learning. PEO had a significant influence on PU and PU was able to mediate the relationship between LPI and PEO with CI. However, PEO did not.